Metamath Proof Explorer


Theorem ceqsralbv

Description: Elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020)

Ref Expression
Hypothesis ceqsrexv.1 x = A φ ψ
Assertion ceqsralbv x B x = A φ A B ψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x = A φ ψ
2 1 notbid x = A ¬ φ ¬ ψ
3 2 ceqsrexbv x B x = A ¬ φ A B ¬ ψ
4 rexanali x B x = A ¬ φ ¬ x B x = A φ
5 annim A B ¬ ψ ¬ A B ψ
6 3 4 5 3bitr3i ¬ x B x = A φ ¬ A B ψ
7 6 con4bii x B x = A φ A B ψ