Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
ceqsralvOLD
Metamath Proof Explorer
Description: Obsolete version of ceqsalv as of 8-Sep-2024. (Contributed by NM , 21-Jun-2013) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypothesis
ceqsralv.2
⊢ x = A → φ ↔ ψ
Assertion
ceqsralvOLD
⊢ A ∈ B → ∀ x ∈ B x = A → φ ↔ ψ
Proof
Step
Hyp
Ref
Expression
1
ceqsralv.2
⊢ x = A → φ ↔ ψ
2
nfv
⊢ Ⅎ x ψ
3
1
ax-gen
⊢ ∀ x x = A → φ ↔ ψ
4
ceqsralt
⊢ Ⅎ x ψ ∧ ∀ x x = A → φ ↔ ψ ∧ A ∈ B → ∀ x ∈ B x = A → φ ↔ ψ
5
2 3 4
mp3an12
⊢ A ∈ B → ∀ x ∈ B x = A → φ ↔ ψ