Metamath Proof Explorer


Theorem ceqsrexbv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Hypothesis ceqsrexv.1 x = A φ ψ
Assertion ceqsrexbv x B x = A φ A B ψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x = A φ ψ
2 r19.42v x B A B x = A φ A B x B x = A φ
3 eleq1 x = A x B A B
4 3 adantr x = A φ x B A B
5 4 pm5.32ri x B x = A φ A B x = A φ
6 5 bicomi A B x = A φ x B x = A φ
7 6 baib x B A B x = A φ x = A φ
8 7 rexbiia x B A B x = A φ x B x = A φ
9 1 ceqsrexv A B x B x = A φ ψ
10 9 pm5.32i A B x B x = A φ A B ψ
11 2 8 10 3bitr3i x B x = A φ A B ψ