Metamath Proof Explorer


Theorem cevath

Description: Ceva's theorem. Let A B C be a triangle and let points F , D and E lie on sides A B , B C , C A correspondingly. Suppose that cevians A D , B E and C F intersect at one point O . Then triangle's sides are partitioned into segments and their lengths satisfy a certain identity. Here we obtain a bit stronger version by using complex numbers themselves instead of their absolute values.

The proof goes by applying cevathlem2 three times and then using cevathlem1 to multiply obtained identities and prove the theorem.

In the theorem statement we are using function G as a collinearity indicator. For justification of that use, see sigarcol . This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017)

Ref Expression
Hypotheses cevath.sigar G=x,yxy
cevath.a φABC
cevath.b φFDE
cevath.c φO
cevath.d φAOGDO=0BOGEO=0COGFO=0
cevath.e φAFGBF=0BDGCD=0CEGAE=0
cevath.f φAOGBO0BOGCO0COGAO0
Assertion cevath φAFCEBD=FBEADC

Proof

Step Hyp Ref Expression
1 cevath.sigar G=x,yxy
2 cevath.a φABC
3 cevath.b φFDE
4 cevath.c φO
5 cevath.d φAOGDO=0BOGEO=0COGFO=0
6 cevath.e φAFGBF=0BDGCD=0CEGAE=0
7 cevath.f φAOGBO0BOGCO0COGAO0
8 2 simp2d φB
9 8 4 subcld φBO
10 2 simp3d φC
11 10 4 subcld φCO
12 9 11 jca φBOCO
13 1 12 sigarimcd φBOGCO
14 2 simp1d φA
15 3 simp1d φF
16 14 15 subcld φAF
17 14 4 subcld φAO
18 11 17 jca φCOAO
19 1 18 sigarimcd φCOGAO
20 13 16 19 3jca φBOGCOAFCOGAO
21 15 8 subcld φFB
22 17 9 jca φAOBO
23 1 22 sigarimcd φAOGBO
24 3 simp3d φE
25 10 24 subcld φCE
26 21 23 25 3jca φFBAOGBOCE
27 24 14 subcld φEA
28 3 simp2d φD
29 8 28 subcld φBD
30 28 10 subcld φDC
31 27 29 30 3jca φEABDDC
32 7 simp2d φBOGCO0
33 7 simp1d φAOGBO0
34 7 simp3d φCOGAO0
35 32 33 34 3jca φBOGCO0AOGBO0COGAO0
36 10 14 8 3jca φCAB
37 24 15 28 3jca φEFD
38 5 simp3d φCOGFO=0
39 5 simp1d φAOGDO=0
40 5 simp2d φBOGEO=0
41 38 39 40 3jca φCOGFO=0AOGDO=0BOGEO=0
42 6 simp3d φCEGAE=0
43 6 simp1d φAFGBF=0
44 6 simp2d φBDGCD=0
45 42 43 44 3jca φCEGAE=0AFGBF=0BDGCD=0
46 34 33 32 3jca φCOGAO0AOGBO0BOGCO0
47 1 36 37 4 41 45 46 cevathlem2 φBOGCOAF=COGAOFB
48 8 10 14 3jca φBCA
49 28 24 15 3jca φDEF
50 40 38 39 3jca φBOGEO=0COGFO=0AOGDO=0
51 44 42 43 3jca φBDGCD=0CEGAE=0AFGBF=0
52 32 34 33 3jca φBOGCO0COGAO0AOGBO0
53 1 48 49 4 50 51 52 cevathlem2 φAOGBOCE=BOGCOEA
54 1 2 3 4 5 6 7 cevathlem2 φCOGAOBD=AOGBODC
55 47 53 54 3jca φBOGCOAF=COGAOFBAOGBOCE=BOGCOEACOGAOBD=AOGBODC
56 20 26 31 35 55 cevathlem1 φAFCEBD=FBEADC