Metamath Proof Explorer


Theorem cevathlem2

Description: Ceva's theorem second lemma. Relate (doubled) areas of triangles C A O and A B O with of segments B D and D C . (Contributed by Saveliy Skresanov, 24-Sep-2017)

Ref Expression
Hypotheses cevath.sigar G = x , y x y
cevath.a φ A B C
cevath.b φ F D E
cevath.c φ O
cevath.d φ A O G D O = 0 B O G E O = 0 C O G F O = 0
cevath.e φ A F G B F = 0 B D G C D = 0 C E G A E = 0
cevath.f φ A O G B O 0 B O G C O 0 C O G A O 0
Assertion cevathlem2 φ C O G A O B D = A O G B O D C

Proof

Step Hyp Ref Expression
1 cevath.sigar G = x , y x y
2 cevath.a φ A B C
3 cevath.b φ F D E
4 cevath.c φ O
5 cevath.d φ A O G D O = 0 B O G E O = 0 C O G F O = 0
6 cevath.e φ A F G B F = 0 B D G C D = 0 C E G A E = 0
7 cevath.f φ A O G B O 0 B O G C O 0 C O G A O 0
8 3 simp2d φ D
9 2 simp1d φ A
10 2 simp2d φ B
11 8 9 10 3jca φ D A B
12 9 4 subcld φ A O
13 8 4 subcld φ D O
14 12 13 jca φ A O D O
15 5 simp1d φ A O G D O = 0
16 1 14 15 sigariz φ D O G A O = 0
17 4 16 jca φ O D O G A O = 0
18 1 11 17 sigaradd φ A B G D B O B G D B = A B G O B
19 1 sigarperm B A O B O G A O = A B G O B
20 10 9 4 19 syl3anc φ B O G A O = A B G O B
21 18 20 eqtr4d φ A B G D B O B G D B = B O G A O
22 21 oveq1d φ A B G D B O B G D B C D = B O G A O C D
23 9 10 subcld φ A B
24 8 10 subcld φ D B
25 23 24 jca φ A B D B
26 1 25 sigarimcd φ A B G D B
27 4 10 subcld φ O B
28 27 24 jca φ O B D B
29 1 28 sigarimcd φ O B G D B
30 2 simp3d φ C
31 30 8 subcld φ C D
32 26 29 31 subdird φ A B G D B O B G D B C D = A B G D B C D O B G D B C D
33 22 32 eqtr3d φ B O G A O C D = A B G D B C D O B G D B C D
34 10 30 9 3jca φ B C A
35 6 simp2d φ B D G C D = 0
36 8 35 jca φ D B D G C D = 0
37 1 34 36 sharhght φ A B G D B C D = A C G D C B D
38 10 30 4 3jca φ B C O
39 1 38 36 sharhght φ O B G D B C D = O C G D C B D
40 37 39 oveq12d φ A B G D B C D O B G D B C D = A C G D C B D O C G D C B D
41 9 30 subcld φ A C
42 8 30 subcld φ D C
43 1 sigarim A C D C A C G D C
44 41 42 43 syl2anc φ A C G D C
45 44 recnd φ A C G D C
46 4 30 subcld φ O C
47 46 42 jca φ O C D C
48 1 47 sigarimcd φ O C G D C
49 10 8 subcld φ B D
50 45 48 49 subdird φ A C G D C O C G D C B D = A C G D C B D O C G D C B D
51 8 9 30 3jca φ D A C
52 1 51 17 sigaradd φ A C G D C O C G D C = A C G O C
53 1 sigarperm C A O C O G A O = A C G O C
54 30 9 4 53 syl3anc φ C O G A O = A C G O C
55 52 54 eqtr4d φ A C G D C O C G D C = C O G A O
56 55 oveq1d φ A C G D C O C G D C B D = C O G A O B D
57 50 56 eqtr3d φ A C G D C B D O C G D C B D = C O G A O B D
58 33 40 57 3eqtrrd φ C O G A O B D = B O G A O C D
59 10 4 subcld φ B O
60 1 sigarac B O A O B O G A O = A O G B O
61 59 12 60 syl2anc φ B O G A O = A O G B O
62 61 oveq1d φ B O G A O C D = A O G B O C D
63 12 59 jca φ A O B O
64 1 63 sigarimcd φ A O G B O
65 mulneg12 A O G B O C D A O G B O C D = A O G B O C D
66 64 31 65 syl2anc φ A O G B O C D = A O G B O C D
67 30 8 negsubdi2d φ C D = D C
68 67 oveq2d φ A O G B O C D = A O G B O D C
69 66 68 eqtrd φ A O G B O C D = A O G B O D C
70 58 62 69 3eqtrd φ C O G A O B D = A O G B O D C