Metamath Proof Explorer


Theorem cf0

Description: Value of the cofinality function at 0. Exercise 2 of TakeutiZaring p. 102. (Contributed by NM, 16-Apr-2004)

Ref Expression
Assertion cf0 cf =

Proof

Step Hyp Ref Expression
1 cfub cf x | y x = card y y y
2 0ss y
3 2 biantru y y y
4 ss0b y y =
5 3 4 bitr3i y y y =
6 5 anbi1ci x = card y y y y = x = card y
7 6 exbii y x = card y y y y y = x = card y
8 0ex V
9 fveq2 y = card y = card
10 9 eqeq2d y = x = card y x = card
11 8 10 ceqsexv y y = x = card y x = card
12 card0 card =
13 12 eqeq2i x = card x =
14 7 11 13 3bitri y x = card y y y x =
15 14 abbii x | y x = card y y y = x | x =
16 df-sn = x | x =
17 15 16 eqtr4i x | y x = card y y y =
18 17 inteqi x | y x = card y y y =
19 8 intsn =
20 18 19 eqtri x | y x = card y y y =
21 1 20 sseqtri cf
22 ss0b cf cf =
23 21 22 mpbi cf =