Metamath Proof Explorer


Theorem cfcof

Description: If there is a cofinal map from A to B , then they have the same cofinality. This was used as Definition 11.1 of TakeutiZaring p. 100, who defines an equivalence relation cof ( A , B ) and defines our cf ( B ) as the minimum B such that cof ( A , B ) . (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Assertion cfcof A On B On f f : B A Smo f z A w B z f w cf A = cf B

Proof

Step Hyp Ref Expression
1 cfcoflem A On B On f f : B A Smo f z A w B z f w cf A cf B
2 1 imp A On B On f f : B A Smo f z A w B z f w cf A cf B
3 cff1 A On g g : cf A 1-1 A s A t cf A s g t
4 f1f g : cf A 1-1 A g : cf A A
5 4 anim1i g : cf A 1-1 A s A t cf A s g t g : cf A A s A t cf A s g t
6 5 eximi g g : cf A 1-1 A s A t cf A s g t g g : cf A A s A t cf A s g t
7 3 6 syl A On g g : cf A A s A t cf A s g t
8 eqid y cf A v B | g y f v = y cf A v B | g y f v
9 8 coftr f f : B A Smo f z A w B z f w g g : cf A A s A t cf A s g t h h : cf A B r B t cf A r h t
10 7 9 syl5com A On f f : B A Smo f z A w B z f w h h : cf A B r B t cf A r h t
11 eloni B On Ord B
12 cfon cf A On
13 eqid x cf A | t x h t h x = x cf A | t x h t h x
14 eqid c cf A | r h c = c cf A | r h c
15 eqid OrdIso E x cf A | t x h t h x = OrdIso E x cf A | t x h t h x
16 13 14 15 cofsmo Ord B cf A On h h : cf A B r B t cf A r h t c suc cf A k k : c B Smo k r B s c r k s
17 11 12 16 sylancl B On h h : cf A B r B t cf A r h t c suc cf A k k : c B Smo k r B s c r k s
18 12 onsuci suc cf A On
19 18 oneli c suc cf A c On
20 cfflb B On c On k k : c B r B s c r k s cf B c
21 19 20 sylan2 B On c suc cf A k k : c B r B s c r k s cf B c
22 3simpb k : c B Smo k r B s c r k s k : c B r B s c r k s
23 22 eximi k k : c B Smo k r B s c r k s k k : c B r B s c r k s
24 21 23 impel B On c suc cf A k k : c B Smo k r B s c r k s cf B c
25 onsssuc c On cf A On c cf A c suc cf A
26 19 12 25 sylancl c suc cf A c cf A c suc cf A
27 26 ibir c suc cf A c cf A
28 27 ad2antlr B On c suc cf A k k : c B Smo k r B s c r k s c cf A
29 24 28 sstrd B On c suc cf A k k : c B Smo k r B s c r k s cf B cf A
30 29 rexlimdva2 B On c suc cf A k k : c B Smo k r B s c r k s cf B cf A
31 17 30 syld B On h h : cf A B r B t cf A r h t cf B cf A
32 10 31 sylan9 A On B On f f : B A Smo f z A w B z f w cf B cf A
33 32 imp A On B On f f : B A Smo f z A w B z f w cf B cf A
34 2 33 eqssd A On B On f f : B A Smo f z A w B z f w cf A = cf B
35 34 ex A On B On f f : B A Smo f z A w B z f w cf A = cf B