Step |
Hyp |
Ref |
Expression |
1 |
|
cff1 |
|
2 |
|
f1f |
|
3 |
|
fco |
|
4 |
3
|
adantlr |
|
5 |
|
r19.29 |
|
6 |
|
ffvelrn |
|
7 |
|
ffn |
|
8 |
|
smoword |
|
9 |
8
|
biimpd |
|
10 |
9
|
exp32 |
|
11 |
7 10
|
sylan |
|
12 |
6 11
|
syl7 |
|
13 |
12
|
com23 |
|
14 |
13
|
expdimp |
|
15 |
14
|
3imp2 |
|
16 |
|
sstr2 |
|
17 |
15 16
|
syl5com |
|
18 |
|
fvco3 |
|
19 |
18
|
sseq2d |
|
20 |
19
|
adantll |
|
21 |
20
|
3ad2antr1 |
|
22 |
17 21
|
sylibrd |
|
23 |
22
|
expcom |
|
24 |
23
|
3expia |
|
25 |
24
|
com4t |
|
26 |
25
|
imp |
|
27 |
26
|
expcomd |
|
28 |
27
|
imp31 |
|
29 |
28
|
reximdva |
|
30 |
29
|
exp31 |
|
31 |
30
|
com34 |
|
32 |
31
|
impcomd |
|
33 |
32
|
com23 |
|
34 |
33
|
rexlimdv |
|
35 |
5 34
|
syl5 |
|
36 |
35
|
expdimp |
|
37 |
36
|
ralimdv |
|
38 |
37
|
impr |
|
39 |
|
vex |
|
40 |
|
vex |
|
41 |
39 40
|
coex |
|
42 |
|
feq1 |
|
43 |
|
fveq1 |
|
44 |
43
|
sseq2d |
|
45 |
44
|
rexbidv |
|
46 |
45
|
ralbidv |
|
47 |
42 46
|
anbi12d |
|
48 |
41 47
|
spcev |
|
49 |
4 38 48
|
syl2an2r |
|
50 |
49
|
exp43 |
|
51 |
50
|
com24 |
|
52 |
51
|
3impia |
|
53 |
52
|
exlimiv |
|
54 |
53
|
com13 |
|
55 |
2 54
|
syl |
|
56 |
55
|
imp |
|
57 |
56
|
exlimiv |
|
58 |
1 57
|
syl |
|
59 |
|
cfon |
|
60 |
|
cfflb |
|
61 |
59 60
|
mpan2 |
|
62 |
58 61
|
sylan9r |
|