Description: Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 12-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cfeq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfval | |
|
2 | 1 | eqeq1d | |
3 | vex | |
|
4 | eqeq1 | |
|
5 | 4 | anbi1d | |
6 | 5 | exbidv | |
7 | 3 6 | elab | |
8 | fveq2 | |
|
9 | cardidm | |
|
10 | 8 9 | eqtrdi | |
11 | eqeq2 | |
|
12 | 10 11 | mpbird | |
13 | 12 | adantr | |
14 | 13 | exlimiv | |
15 | 7 14 | sylbi | |
16 | cardon | |
|
17 | 15 16 | eqeltrrdi | |
18 | 17 | ssriv | |
19 | onint0 | |
|
20 | 18 19 | ax-mp | |
21 | 0ex | |
|
22 | eqeq1 | |
|
23 | 22 | anbi1d | |
24 | 23 | exbidv | |
25 | 21 24 | elab | |
26 | onss | |
|
27 | sstr | |
|
28 | 27 | ancoms | |
29 | 26 28 | sylan | |
30 | 29 | 3adant2 | |
31 | 30 | 3adant3r | |
32 | simp2 | |
|
33 | simp3 | |
|
34 | eqcom | |
|
35 | vex | |
|
36 | onssnum | |
|
37 | 35 36 | mpan | |
38 | cardnueq0 | |
|
39 | 37 38 | syl | |
40 | 34 39 | bitrid | |
41 | 40 | biimpa | |
42 | sseq1 | |
|
43 | rexeq | |
|
44 | 43 | ralbidv | |
45 | 42 44 | anbi12d | |
46 | 45 | biimpa | |
47 | 41 46 | sylan | |
48 | rex0 | |
|
49 | 48 | rgenw | |
50 | r19.2z | |
|
51 | 49 50 | mpan2 | |
52 | rexnal | |
|
53 | 51 52 | sylib | |
54 | 53 | necon4ai | |
55 | 47 54 | simpl2im | |
56 | 31 32 33 55 | syl21anc | |
57 | 56 | 3expib | |
58 | 57 | exlimdv | |
59 | 25 58 | syl5bi | |
60 | 20 59 | syl5bi | |
61 | 2 60 | sylbid | |
62 | fveq2 | |
|
63 | cf0 | |
|
64 | 62 63 | eqtrdi | |
65 | 61 64 | impbid1 | |