Metamath Proof Explorer


Theorem cfeq0

Description: Only the ordinal zero has cofinality zero. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 12-Feb-2013)

Ref Expression
Assertion cfeq0 AOncfA=A=

Proof

Step Hyp Ref Expression
1 cfval AOncfA=x|yx=cardyyAzAwyzw
2 1 eqeq1d AOncfA=x|yx=cardyyAzAwyzw=
3 vex vV
4 eqeq1 x=vx=cardyv=cardy
5 4 anbi1d x=vx=cardyyAzAwyzwv=cardyyAzAwyzw
6 5 exbidv x=vyx=cardyyAzAwyzwyv=cardyyAzAwyzw
7 3 6 elab vx|yx=cardyyAzAwyzwyv=cardyyAzAwyzw
8 fveq2 v=cardycardv=cardcardy
9 cardidm cardcardy=cardy
10 8 9 eqtrdi v=cardycardv=cardy
11 eqeq2 v=cardycardv=vcardv=cardy
12 10 11 mpbird v=cardycardv=v
13 12 adantr v=cardyyAzAwyzwcardv=v
14 13 exlimiv yv=cardyyAzAwyzwcardv=v
15 7 14 sylbi vx|yx=cardyyAzAwyzwcardv=v
16 cardon cardvOn
17 15 16 eqeltrrdi vx|yx=cardyyAzAwyzwvOn
18 17 ssriv x|yx=cardyyAzAwyzwOn
19 onint0 x|yx=cardyyAzAwyzwOnx|yx=cardyyAzAwyzw=x|yx=cardyyAzAwyzw
20 18 19 ax-mp x|yx=cardyyAzAwyzw=x|yx=cardyyAzAwyzw
21 0ex V
22 eqeq1 x=x=cardy=cardy
23 22 anbi1d x=x=cardyyAzAwyzw=cardyyAzAwyzw
24 23 exbidv x=yx=cardyyAzAwyzwy=cardyyAzAwyzw
25 21 24 elab x|yx=cardyyAzAwyzwy=cardyyAzAwyzw
26 onss AOnAOn
27 sstr yAAOnyOn
28 27 ancoms AOnyAyOn
29 26 28 sylan AOnyAyOn
30 29 3adant2 AOn=cardyyAyOn
31 30 3adant3r AOn=cardyyAzAwyzwyOn
32 simp2 AOn=cardyyAzAwyzw=cardy
33 simp3 AOn=cardyyAzAwyzwyAzAwyzw
34 eqcom =cardycardy=
35 vex yV
36 onssnum yVyOnydomcard
37 35 36 mpan yOnydomcard
38 cardnueq0 ydomcardcardy=y=
39 37 38 syl yOncardy=y=
40 34 39 bitrid yOn=cardyy=
41 40 biimpa yOn=cardyy=
42 sseq1 y=yAA
43 rexeq y=wyzwwzw
44 43 ralbidv y=zAwyzwzAwzw
45 42 44 anbi12d y=yAzAwyzwAzAwzw
46 45 biimpa y=yAzAwyzwAzAwzw
47 41 46 sylan yOn=cardyyAzAwyzwAzAwzw
48 rex0 ¬wzw
49 48 rgenw zA¬wzw
50 r19.2z AzA¬wzwzA¬wzw
51 49 50 mpan2 AzA¬wzw
52 rexnal zA¬wzw¬zAwzw
53 51 52 sylib A¬zAwzw
54 53 necon4ai zAwzwA=
55 47 54 simpl2im yOn=cardyyAzAwyzwA=
56 31 32 33 55 syl21anc AOn=cardyyAzAwyzwA=
57 56 3expib AOn=cardyyAzAwyzwA=
58 57 exlimdv AOny=cardyyAzAwyzwA=
59 25 58 syl5bi AOnx|yx=cardyyAzAwyzwA=
60 20 59 syl5bi AOnx|yx=cardyyAzAwyzw=A=
61 2 60 sylbid AOncfA=A=
62 fveq2 A=cfA=cf
63 cf0 cf=
64 62 63 eqtrdi A=cfA=
65 61 64 impbid1 AOncfA=A=