Metamath Proof Explorer


Theorem cff

Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cff cf : On On

Proof

Step Hyp Ref Expression
1 df-cf cf = x On y | z y = card z z x w x v z w v
2 cardon card z On
3 eleq1 y = card z y On card z On
4 2 3 mpbiri y = card z y On
5 4 adantr y = card z z x w x v z w v y On
6 5 exlimiv z y = card z z x w x v z w v y On
7 6 abssi y | z y = card z z x w x v z w v On
8 cflem x On y z y = card z z x w x v z w v
9 abn0 y | z y = card z z x w x v z w v y z y = card z z x w x v z w v
10 8 9 sylibr x On y | z y = card z z x w x v z w v
11 oninton y | z y = card z z x w x v z w v On y | z y = card z z x w x v z w v y | z y = card z z x w x v z w v On
12 7 10 11 sylancr x On y | z y = card z z x w x v z w v On
13 1 12 fmpti cf : On On