Metamath Proof Explorer


Theorem cff1

Description: There is always a map from ( cfA ) to A (this is a stronger condition than the definition, which only presupposes a map from some y ~( cfA ) . (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cff1 AOnff:cfA1-1AzAwcfAzfw

Proof

Step Hyp Ref Expression
1 cfval AOncfA=x|yx=cardyyAzAsyzs
2 cardon cardyOn
3 eleq1 x=cardyxOncardyOn
4 2 3 mpbiri x=cardyxOn
5 4 adantr x=cardyyAzAsyzsxOn
6 5 exlimiv yx=cardyyAzAsyzsxOn
7 6 abssi x|yx=cardyyAzAsyzsOn
8 cflem AOnxyx=cardyyAzAsyzs
9 abn0 x|yx=cardyyAzAsyzsxyx=cardyyAzAsyzs
10 8 9 sylibr AOnx|yx=cardyyAzAsyzs
11 onint x|yx=cardyyAzAsyzsOnx|yx=cardyyAzAsyzsx|yx=cardyyAzAsyzsx|yx=cardyyAzAsyzs
12 7 10 11 sylancr AOnx|yx=cardyyAzAsyzsx|yx=cardyyAzAsyzs
13 1 12 eqeltrd AOncfAx|yx=cardyyAzAsyzs
14 fvex cfAV
15 eqeq1 x=cfAx=cardycfA=cardy
16 15 anbi1d x=cfAx=cardyyAzAsyzscfA=cardyyAzAsyzs
17 16 exbidv x=cfAyx=cardyyAzAsyzsycfA=cardyyAzAsyzs
18 14 17 elab cfAx|yx=cardyyAzAsyzsycfA=cardyyAzAsyzs
19 13 18 sylib AOnycfA=cardyyAzAsyzs
20 simplr AOncfA=cardyyAzAsyzscfA=cardy
21 onss AOnAOn
22 sstr yAAOnyOn
23 21 22 sylan2 yAAOnyOn
24 23 ancoms AOnyAyOn
25 24 ad2ant2r AOncfA=cardyyAzAsyzsyOn
26 vex yV
27 onssnum yVyOnydomcard
28 26 27 mpan yOnydomcard
29 cardid2 ydomcardcardyy
30 28 29 syl yOncardyy
31 30 adantl cfA=cardyyOncardyy
32 breq1 cfA=cardycfAycardyy
33 32 adantr cfA=cardyyOncfAycardyy
34 31 33 mpbird cfA=cardyyOncfAy
35 bren cfAyff:cfA1-1 ontoy
36 34 35 sylib cfA=cardyyOnff:cfA1-1 ontoy
37 20 25 36 syl2anc AOncfA=cardyyAzAsyzsff:cfA1-1 ontoy
38 f1of1 f:cfA1-1 ontoyf:cfA1-1y
39 f1ss f:cfA1-1yyAf:cfA1-1A
40 39 ancoms yAf:cfA1-1yf:cfA1-1A
41 38 40 sylan2 yAf:cfA1-1 ontoyf:cfA1-1A
42 41 adantlr yAzAsyzsf:cfA1-1 ontoyf:cfA1-1A
43 42 3adant1 AOncfA=cardyyAzAsyzsf:cfA1-1 ontoyf:cfA1-1A
44 f1ofo f:cfA1-1 ontoyf:cfAontoy
45 foelrn f:cfAontoysywcfAs=fw
46 sseq2 s=fwzszfw
47 46 biimpcd zss=fwzfw
48 47 reximdv zswcfAs=fwwcfAzfw
49 45 48 syl5com f:cfAontoysyzswcfAzfw
50 49 rexlimdva f:cfAontoysyzswcfAzfw
51 50 ralimdv f:cfAontoyzAsyzszAwcfAzfw
52 44 51 syl f:cfA1-1 ontoyzAsyzszAwcfAzfw
53 52 impcom zAsyzsf:cfA1-1 ontoyzAwcfAzfw
54 53 adantll yAzAsyzsf:cfA1-1 ontoyzAwcfAzfw
55 54 3adant1 AOncfA=cardyyAzAsyzsf:cfA1-1 ontoyzAwcfAzfw
56 43 55 jca AOncfA=cardyyAzAsyzsf:cfA1-1 ontoyf:cfA1-1AzAwcfAzfw
57 56 3expia AOncfA=cardyyAzAsyzsf:cfA1-1 ontoyf:cfA1-1AzAwcfAzfw
58 57 eximdv AOncfA=cardyyAzAsyzsff:cfA1-1 ontoyff:cfA1-1AzAwcfAzfw
59 37 58 mpd AOncfA=cardyyAzAsyzsff:cfA1-1AzAwcfAzfw
60 59 expl AOncfA=cardyyAzAsyzsff:cfA1-1AzAwcfAzfw
61 60 exlimdv AOnycfA=cardyyAzAsyzsff:cfA1-1AzAwcfAzfw
62 19 61 mpd AOnff:cfA1-1AzAwcfAzfw