Metamath Proof Explorer


Theorem cfidm

Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cfidm cf cf A = cf A

Proof

Step Hyp Ref Expression
1 cfle cf cf A cf A
2 1 a1i A On cf cf A cf A
3 cfsmo A On f f : cf A A Smo f x A y cf A x f y
4 cfon cf A On
5 cfcoflem A On cf A On f f : cf A A Smo f x A y cf A x f y cf A cf cf A
6 4 5 mpan2 A On f f : cf A A Smo f x A y cf A x f y cf A cf cf A
7 3 6 mpd A On cf A cf cf A
8 2 7 eqssd A On cf cf A = cf A
9 cf0 cf =
10 cff cf : On On
11 10 fdmi dom cf = On
12 11 eleq2i A dom cf A On
13 ndmfv ¬ A dom cf cf A =
14 12 13 sylnbir ¬ A On cf A =
15 14 fveq2d ¬ A On cf cf A = cf
16 9 15 14 3eqtr4a ¬ A On cf cf A = cf A
17 8 16 pm2.61i cf cf A = cf A