Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Convergence and completeness
cfilfil
Next ⟩
cfili
Metamath Proof Explorer
Ascii
Unicode
Theorem
cfilfil
Description:
A Cauchy filter is a filter.
(Contributed by
Mario Carneiro
, 13-Oct-2015)
Ref
Expression
Assertion
cfilfil
⊢
D
∈
∞Met
⁡
X
∧
F
∈
CauFil
⁡
D
→
F
∈
Fil
⁡
X
Proof
Step
Hyp
Ref
Expression
1
iscfil
⊢
D
∈
∞Met
⁡
X
→
F
∈
CauFil
⁡
D
↔
F
∈
Fil
⁡
X
∧
∀
x
∈
ℝ
+
∃
y
∈
F
D
y
×
y
⊆
0
x
2
1
simprbda
⊢
D
∈
∞Met
⁡
X
∧
F
∈
CauFil
⁡
D
→
F
∈
Fil
⁡
X