Metamath Proof Explorer


Theorem cfilucfil4

Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion cfilucfil4 X D ∞Met X C Fil X C CauFilU metUnif D C CauFil D

Proof

Step Hyp Ref Expression
1 cfilucfil3 X D ∞Met X C Fil X C CauFilU metUnif D C CauFil D
2 cfilfil D ∞Met X C CauFil D C Fil X
3 2 ex D ∞Met X C CauFil D C Fil X
4 3 adantl X D ∞Met X C CauFil D C Fil X
5 4 pm4.71rd X D ∞Met X C CauFil D C Fil X C CauFil D
6 1 5 bitrd X D ∞Met X C Fil X C CauFilU metUnif D C Fil X C CauFil D
7 pm5.32 C Fil X C CauFilU metUnif D C CauFil D C Fil X C CauFilU metUnif D C Fil X C CauFil D
8 6 7 sylibr X D ∞Met X C Fil X C CauFilU metUnif D C CauFil D
9 8 3impia X D ∞Met X C Fil X C CauFilU metUnif D C CauFil D