Metamath Proof Explorer


Theorem cfiluexsm

Description: For a Cauchy filter base and any entourage V , there is an element of the filter small in V . (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion cfiluexsm U UnifOn X F CauFilU U V U a F a × a V

Proof

Step Hyp Ref Expression
1 iscfilu U UnifOn X F CauFilU U F fBas X v U a F a × a v
2 1 simplbda U UnifOn X F CauFilU U v U a F a × a v
3 2 3adant3 U UnifOn X F CauFilU U V U v U a F a × a v
4 sseq2 v = V a × a v a × a V
5 4 rexbidv v = V a F a × a v a F a × a V
6 5 rspcv V U v U a F a × a v a F a × a V
7 6 3ad2ant3 U UnifOn X F CauFilU U V U v U a F a × a v a F a × a V
8 3 7 mpd U UnifOn X F CauFilU U V U a F a × a V