Metamath Proof Explorer


Theorem cfilufbas

Description: A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion cfilufbas U UnifOn X F CauFilU U F fBas X

Proof

Step Hyp Ref Expression
1 iscfilu U UnifOn X F CauFilU U F fBas X v U a F a × a v
2 1 simprbda U UnifOn X F CauFilU U F fBas X