Metamath Proof Explorer


Theorem cfilufg

Description: The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Assertion cfilufg U UnifOn X F CauFilU U X filGen F CauFilU U

Proof

Step Hyp Ref Expression
1 cfilufbas U UnifOn X F CauFilU U F fBas X
2 fgcl F fBas X X filGen F Fil X
3 filfbas X filGen F Fil X X filGen F fBas X
4 1 2 3 3syl U UnifOn X F CauFilU U X filGen F fBas X
5 1 ad3antrrr U UnifOn X F CauFilU U v U b F b × b v F fBas X
6 ssfg F fBas X F X filGen F
7 5 6 syl U UnifOn X F CauFilU U v U b F b × b v F X filGen F
8 simplr U UnifOn X F CauFilU U v U b F b × b v b F
9 7 8 sseldd U UnifOn X F CauFilU U v U b F b × b v b X filGen F
10 id a = b a = b
11 10 sqxpeqd a = b a × a = b × b
12 11 sseq1d a = b a × a v b × b v
13 12 rspcev b X filGen F b × b v a X filGen F a × a v
14 9 13 sylancom U UnifOn X F CauFilU U v U b F b × b v a X filGen F a × a v
15 iscfilu U UnifOn X F CauFilU U F fBas X v U b F b × b v
16 15 simplbda U UnifOn X F CauFilU U v U b F b × b v
17 16 r19.21bi U UnifOn X F CauFilU U v U b F b × b v
18 14 17 r19.29a U UnifOn X F CauFilU U v U a X filGen F a × a v
19 18 ralrimiva U UnifOn X F CauFilU U v U a X filGen F a × a v
20 iscfilu U UnifOn X X filGen F CauFilU U X filGen F fBas X v U a X filGen F a × a v
21 20 adantr U UnifOn X F CauFilU U X filGen F CauFilU U X filGen F fBas X v U a X filGen F a × a v
22 4 19 21 mpbir2and U UnifOn X F CauFilU U X filGen F CauFilU U