Metamath Proof Explorer


Theorem cfiluweak

Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Assertion cfiluweak U UnifOn X A X F CauFilU U 𝑡 A × A F CauFilU U

Proof

Step Hyp Ref Expression
1 trust U UnifOn X A X U 𝑡 A × A UnifOn A
2 iscfilu U 𝑡 A × A UnifOn A F CauFilU U 𝑡 A × A F fBas A u U 𝑡 A × A a F a × a u
3 2 biimpa U 𝑡 A × A UnifOn A F CauFilU U 𝑡 A × A F fBas A u U 𝑡 A × A a F a × a u
4 1 3 stoic3 U UnifOn X A X F CauFilU U 𝑡 A × A F fBas A u U 𝑡 A × A a F a × a u
5 4 simpld U UnifOn X A X F CauFilU U 𝑡 A × A F fBas A
6 fbsspw F fBas A F 𝒫 A
7 5 6 syl U UnifOn X A X F CauFilU U 𝑡 A × A F 𝒫 A
8 simp2 U UnifOn X A X F CauFilU U 𝑡 A × A A X
9 8 sspwd U UnifOn X A X F CauFilU U 𝑡 A × A 𝒫 A 𝒫 X
10 7 9 sstrd U UnifOn X A X F CauFilU U 𝑡 A × A F 𝒫 X
11 simp1 U UnifOn X A X F CauFilU U 𝑡 A × A U UnifOn X
12 11 elfvexd U UnifOn X A X F CauFilU U 𝑡 A × A X V
13 fbasweak F fBas A F 𝒫 X X V F fBas X
14 5 10 12 13 syl3anc U UnifOn X A X F CauFilU U 𝑡 A × A F fBas X
15 sseq2 u = v A × A a × a u a × a v A × A
16 15 rexbidv u = v A × A a F a × a u a F a × a v A × A
17 4 simprd U UnifOn X A X F CauFilU U 𝑡 A × A u U 𝑡 A × A a F a × a u
18 17 adantr U UnifOn X A X F CauFilU U 𝑡 A × A v U u U 𝑡 A × A a F a × a u
19 11 adantr U UnifOn X A X F CauFilU U 𝑡 A × A v U U UnifOn X
20 12 adantr U UnifOn X A X F CauFilU U 𝑡 A × A v U X V
21 8 adantr U UnifOn X A X F CauFilU U 𝑡 A × A v U A X
22 20 21 ssexd U UnifOn X A X F CauFilU U 𝑡 A × A v U A V
23 22 22 xpexd U UnifOn X A X F CauFilU U 𝑡 A × A v U A × A V
24 simpr U UnifOn X A X F CauFilU U 𝑡 A × A v U v U
25 elrestr U UnifOn X A × A V v U v A × A U 𝑡 A × A
26 19 23 24 25 syl3anc U UnifOn X A X F CauFilU U 𝑡 A × A v U v A × A U 𝑡 A × A
27 16 18 26 rspcdva U UnifOn X A X F CauFilU U 𝑡 A × A v U a F a × a v A × A
28 inss1 v A × A v
29 sstr a × a v A × A v A × A v a × a v
30 28 29 mpan2 a × a v A × A a × a v
31 30 reximi a F a × a v A × A a F a × a v
32 27 31 syl U UnifOn X A X F CauFilU U 𝑡 A × A v U a F a × a v
33 32 ralrimiva U UnifOn X A X F CauFilU U 𝑡 A × A v U a F a × a v
34 iscfilu U UnifOn X F CauFilU U F fBas X v U a F a × a v
35 34 3ad2ant1 U UnifOn X A X F CauFilU U 𝑡 A × A F CauFilU U F fBas X v U a F a × a v
36 14 33 35 mpbir2and U UnifOn X A X F CauFilU U 𝑡 A × A F CauFilU U