| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq2 |  | 
						
							| 2 | 1 | eleq1d |  | 
						
							| 3 | 2 | elrab |  | 
						
							| 4 |  | velpw |  | 
						
							| 5 | 4 | anbi1i |  | 
						
							| 6 | 3 5 | bitri |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | simp1 |  | 
						
							| 9 |  | ssdif0 |  | 
						
							| 10 |  | 0fi |  | 
						
							| 11 |  | eleq1 |  | 
						
							| 12 | 10 11 | mpbiri |  | 
						
							| 13 | 9 12 | sylbi |  | 
						
							| 14 |  | difeq2 |  | 
						
							| 15 | 14 | eleq1d |  | 
						
							| 16 | 15 | sbcieg |  | 
						
							| 17 | 16 | biimpar |  | 
						
							| 18 | 13 17 | sylan2 |  | 
						
							| 19 | 18 | 3adant3 |  | 
						
							| 20 |  | 0ex |  | 
						
							| 21 |  | difeq2 |  | 
						
							| 22 | 21 | eleq1d |  | 
						
							| 23 | 20 22 | sbcie |  | 
						
							| 24 |  | dif0 |  | 
						
							| 25 | 24 | eleq1i |  | 
						
							| 26 | 23 25 | sylbb |  | 
						
							| 27 | 26 | con3i |  | 
						
							| 28 | 27 | 3ad2ant3 |  | 
						
							| 29 |  | sscon |  | 
						
							| 30 |  | ssfi |  | 
						
							| 31 | 30 | expcom |  | 
						
							| 32 | 29 31 | syl |  | 
						
							| 33 |  | vex |  | 
						
							| 34 |  | difeq2 |  | 
						
							| 35 | 34 | eleq1d |  | 
						
							| 36 | 33 35 | sbcie |  | 
						
							| 37 |  | vex |  | 
						
							| 38 |  | difeq2 |  | 
						
							| 39 | 38 | eleq1d |  | 
						
							| 40 | 37 39 | sbcie |  | 
						
							| 41 | 32 36 40 | 3imtr4g |  | 
						
							| 42 | 41 | 3ad2ant3 |  | 
						
							| 43 |  | difindi |  | 
						
							| 44 |  | unfi |  | 
						
							| 45 | 43 44 | eqeltrid |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 | 40 36 | anbi12i |  | 
						
							| 48 | 37 | inex1 |  | 
						
							| 49 |  | difeq2 |  | 
						
							| 50 | 49 | eleq1d |  | 
						
							| 51 | 48 50 | sbcie |  | 
						
							| 52 | 46 47 51 | 3imtr4g |  | 
						
							| 53 | 7 8 19 28 42 52 | isfild |  |