Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
|
2 |
1
|
eleq1d |
|
3 |
2
|
elrab |
|
4 |
|
velpw |
|
5 |
4
|
anbi1i |
|
6 |
3 5
|
bitri |
|
7 |
6
|
a1i |
|
8 |
|
simp1 |
|
9 |
|
ssdif0 |
|
10 |
|
0fin |
|
11 |
|
eleq1 |
|
12 |
10 11
|
mpbiri |
|
13 |
9 12
|
sylbi |
|
14 |
|
difeq2 |
|
15 |
14
|
eleq1d |
|
16 |
15
|
sbcieg |
|
17 |
16
|
biimpar |
|
18 |
13 17
|
sylan2 |
|
19 |
18
|
3adant3 |
|
20 |
|
0ex |
|
21 |
|
difeq2 |
|
22 |
21
|
eleq1d |
|
23 |
20 22
|
sbcie |
|
24 |
|
dif0 |
|
25 |
24
|
eleq1i |
|
26 |
23 25
|
sylbb |
|
27 |
26
|
con3i |
|
28 |
27
|
3ad2ant3 |
|
29 |
|
sscon |
|
30 |
|
ssfi |
|
31 |
30
|
expcom |
|
32 |
29 31
|
syl |
|
33 |
|
vex |
|
34 |
|
difeq2 |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
sbcie |
|
37 |
|
vex |
|
38 |
|
difeq2 |
|
39 |
38
|
eleq1d |
|
40 |
37 39
|
sbcie |
|
41 |
32 36 40
|
3imtr4g |
|
42 |
41
|
3ad2ant3 |
|
43 |
|
difindi |
|
44 |
|
unfi |
|
45 |
43 44
|
eqeltrid |
|
46 |
45
|
a1i |
|
47 |
40 36
|
anbi12i |
|
48 |
37
|
inex1 |
|
49 |
|
difeq2 |
|
50 |
49
|
eleq1d |
|
51 |
48 50
|
sbcie |
|
52 |
46 47 51
|
3imtr4g |
|
53 |
7 8 19 28 42 52
|
isfild |
|