Metamath Proof Explorer


Theorem cflecard

Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cflecard cf A card A

Proof

Step Hyp Ref Expression
1 cfval A On cf A = x | y x = card y y A z A w y z w
2 df-sn card A = x | x = card A
3 ssid A A
4 ssid z z
5 sseq2 w = z z w z z
6 5 rspcev z A z z w A z w
7 4 6 mpan2 z A w A z w
8 7 rgen z A w A z w
9 3 8 pm3.2i A A z A w A z w
10 fveq2 y = A card y = card A
11 10 eqeq2d y = A x = card y x = card A
12 sseq1 y = A y A A A
13 rexeq y = A w y z w w A z w
14 13 ralbidv y = A z A w y z w z A w A z w
15 12 14 anbi12d y = A y A z A w y z w A A z A w A z w
16 11 15 anbi12d y = A x = card y y A z A w y z w x = card A A A z A w A z w
17 16 spcegv A On x = card A A A z A w A z w y x = card y y A z A w y z w
18 9 17 mpan2i A On x = card A y x = card y y A z A w y z w
19 18 ss2abdv A On x | x = card A x | y x = card y y A z A w y z w
20 2 19 eqsstrid A On card A x | y x = card y y A z A w y z w
21 intss card A x | y x = card y y A z A w y z w x | y x = card y y A z A w y z w card A
22 20 21 syl A On x | y x = card y y A z A w y z w card A
23 fvex card A V
24 23 intsn card A = card A
25 22 24 sseqtrdi A On x | y x = card y y A z A w y z w card A
26 1 25 eqsstrd A On cf A card A
27 cff cf : On On
28 27 fdmi dom cf = On
29 28 eleq2i A dom cf A On
30 ndmfv ¬ A dom cf cf A =
31 29 30 sylnbir ¬ A On cf A =
32 0ss card A
33 31 32 eqsstrdi ¬ A On cf A card A
34 26 33 pm2.61i cf A card A