Metamath Proof Explorer


Theorem cflem

Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set A . (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion cflem AVxyx=cardyyAzAwyzw

Proof

Step Hyp Ref Expression
1 ssid AA
2 ssid zz
3 sseq2 w=zzwzz
4 3 rspcev zAzzwAzw
5 2 4 mpan2 zAwAzw
6 5 rgen zAwAzw
7 sseq1 y=AyAAA
8 rexeq y=AwyzwwAzw
9 8 ralbidv y=AzAwyzwzAwAzw
10 7 9 anbi12d y=AyAzAwyzwAAzAwAzw
11 10 spcegv AVAAzAwAzwyyAzAwyzw
12 1 6 11 mp2ani AVyyAzAwyzw
13 fvex cardyV
14 13 isseti xx=cardy
15 19.41v xx=cardyyAzAwyzwxx=cardyyAzAwyzw
16 14 15 mpbiran xx=cardyyAzAwyzwyAzAwyzw
17 16 exbii yxx=cardyyAzAwyzwyyAzAwyzw
18 excom yxx=cardyyAzAwyzwxyx=cardyyAzAwyzw
19 17 18 bitr3i yyAzAwyzwxyx=cardyyAzAwyzw
20 12 19 sylib AVxyx=cardyyAzAwyzw