Step |
Hyp |
Ref |
Expression |
1 |
|
cfslb.1 |
|
2 |
|
limord |
|
3 |
|
ordsson |
|
4 |
|
sstr |
|
5 |
4
|
expcom |
|
6 |
2 3 5
|
3syl |
|
7 |
|
onsucuni |
|
8 |
6 7
|
syl6 |
|
9 |
8
|
adantrd |
|
10 |
9
|
ralimdv |
|
11 |
|
uniiun |
|
12 |
|
ss2iun |
|
13 |
11 12
|
eqsstrid |
|
14 |
10 13
|
syl6 |
|
15 |
14
|
imp |
|
16 |
1
|
cfslbn |
|
17 |
16
|
3expib |
|
18 |
|
ordsucss |
|
19 |
2 17 18
|
sylsyld |
|
20 |
19
|
ralimdv |
|
21 |
|
iunss |
|
22 |
20 21
|
syl6ibr |
|
23 |
22
|
imp |
|
24 |
|
sseq1 |
|
25 |
|
eqss |
|
26 |
25
|
simplbi2com |
|
27 |
24 26
|
syl6bi |
|
28 |
27
|
com3l |
|
29 |
15 23 28
|
sylc |
|
30 |
|
limsuc |
|
31 |
17 30
|
sylibd |
|
32 |
31
|
ralimdv |
|
33 |
32
|
imp |
|
34 |
|
r19.29 |
|
35 |
|
eleq1 |
|
36 |
35
|
biimparc |
|
37 |
36
|
rexlimivw |
|
38 |
34 37
|
syl |
|
39 |
38
|
ex |
|
40 |
33 39
|
syl |
|
41 |
40
|
abssdv |
|
42 |
|
vuniex |
|
43 |
42
|
sucex |
|
44 |
43
|
dfiun2 |
|
45 |
44
|
eqeq1i |
|
46 |
1
|
cfslb |
|
47 |
46
|
3expia |
|
48 |
45 47
|
syl5bi |
|
49 |
41 48
|
syldan |
|
50 |
|
eqid |
|
51 |
50
|
rnmpt |
|
52 |
43 50
|
fnmpti |
|
53 |
|
dffn4 |
|
54 |
52 53
|
mpbi |
|
55 |
|
relsdom |
|
56 |
55
|
brrelex1i |
|
57 |
|
breq1 |
|
58 |
|
foeq2 |
|
59 |
|
breq2 |
|
60 |
58 59
|
imbi12d |
|
61 |
57 60
|
imbi12d |
|
62 |
|
cfon |
|
63 |
|
sdomdom |
|
64 |
|
ondomen |
|
65 |
62 63 64
|
sylancr |
|
66 |
|
fodomnum |
|
67 |
65 66
|
syl |
|
68 |
61 67
|
vtoclg |
|
69 |
56 68
|
mpcom |
|
70 |
54 69
|
mpi |
|
71 |
51 70
|
eqbrtrrid |
|
72 |
|
domtr |
|
73 |
71 72
|
sylan2 |
|
74 |
|
domnsym |
|
75 |
73 74
|
syl |
|
76 |
75
|
pm2.01da |
|
77 |
76
|
a1i |
|
78 |
29 49 77
|
3syld |
|
79 |
78
|
necon2ad |
|