Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfslb.1 | |
|
| Assertion | cfslbn | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfslb.1 | |
|
| 2 | uniss | |
|
| 3 | limuni | |
|
| 4 | 3 | sseq2d | |
| 5 | 2 4 | imbitrrid | |
| 6 | 5 | imp | |
| 7 | limord | |
|
| 8 | ordsson | |
|
| 9 | 7 8 | syl | |
| 10 | sstr2 | |
|
| 11 | 9 10 | syl5com | |
| 12 | ssorduni | |
|
| 13 | 11 12 | syl6 | |
| 14 | 13 7 | jctird | |
| 15 | ordsseleq | |
|
| 16 | 14 15 | syl6 | |
| 17 | 16 | imp | |
| 18 | 6 17 | mpbid | |
| 19 | 18 | ord | |
| 20 | 1 | cfslb | |
| 21 | domnsym | |
|
| 22 | 20 21 | syl | |
| 23 | 22 | 3expia | |
| 24 | 19 23 | syld | |
| 25 | 24 | con4d | |
| 26 | 25 | 3impia | |