Metamath Proof Explorer


Theorem cfslbn

Description: Any subset of A smaller than its cofinality has union less than A . (This is the contrapositive to cfslb .) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfslb.1 A V
Assertion cfslbn Lim A B A B cf A B A

Proof

Step Hyp Ref Expression
1 cfslb.1 A V
2 uniss B A B A
3 limuni Lim A A = A
4 3 sseq2d Lim A B A B A
5 2 4 syl5ibr Lim A B A B A
6 5 imp Lim A B A B A
7 limord Lim A Ord A
8 ordsson Ord A A On
9 7 8 syl Lim A A On
10 sstr2 B A A On B On
11 9 10 syl5com Lim A B A B On
12 ssorduni B On Ord B
13 11 12 syl6 Lim A B A Ord B
14 13 7 jctird Lim A B A Ord B Ord A
15 ordsseleq Ord B Ord A B A B A B = A
16 14 15 syl6 Lim A B A B A B A B = A
17 16 imp Lim A B A B A B A B = A
18 6 17 mpbid Lim A B A B A B = A
19 18 ord Lim A B A ¬ B A B = A
20 1 cfslb Lim A B A B = A cf A B
21 domnsym cf A B ¬ B cf A
22 20 21 syl Lim A B A B = A ¬ B cf A
23 22 3expia Lim A B A B = A ¬ B cf A
24 19 23 syld Lim A B A ¬ B A ¬ B cf A
25 24 con4d Lim A B A B cf A B A
26 25 3impia Lim A B A B cf A B A