Metamath Proof Explorer


Theorem cfsmo

Description: The map in cff1 can be assumed to be a strictly monotone ordinal function without loss of generality. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfsmo A On f f : cf A A Smo f z A w cf A z f w

Proof

Step Hyp Ref Expression
1 dmeq x = z dom x = dom z
2 1 fveq2d x = z h dom x = h dom z
3 fveq2 n = m x n = x m
4 suceq x n = x m suc x n = suc x m
5 3 4 syl n = m suc x n = suc x m
6 5 cbviunv n dom x suc x n = m dom x suc x m
7 fveq1 x = z x m = z m
8 suceq x m = z m suc x m = suc z m
9 7 8 syl x = z suc x m = suc z m
10 1 9 iuneq12d x = z m dom x suc x m = m dom z suc z m
11 6 10 eqtrid x = z n dom x suc x n = m dom z suc z m
12 2 11 uneq12d x = z h dom x n dom x suc x n = h dom z m dom z suc z m
13 12 cbvmptv x V h dom x n dom x suc x n = z V h dom z m dom z suc z m
14 eqid recs x V h dom x n dom x suc x n cf A = recs x V h dom x n dom x suc x n cf A
15 13 14 cfsmolem A On f f : cf A A Smo f z A w cf A z f w