Step |
Hyp |
Ref |
Expression |
1 |
|
cfss.1 |
|
2 |
1
|
cflim3 |
|
3 |
|
fvex |
|
4 |
3
|
dfiin2 |
|
5 |
|
cardon |
|
6 |
|
eleq1 |
|
7 |
5 6
|
mpbiri |
|
8 |
7
|
rexlimivw |
|
9 |
8
|
abssi |
|
10 |
|
limuni |
|
11 |
10
|
eqcomd |
|
12 |
|
fveq2 |
|
13 |
12
|
eqcomd |
|
14 |
13
|
biantrud |
|
15 |
|
unieq |
|
16 |
15
|
eqeq1d |
|
17 |
1
|
pwid |
|
18 |
|
eleq1 |
|
19 |
17 18
|
mpbiri |
|
20 |
19
|
biantrurd |
|
21 |
16 20
|
bitr3d |
|
22 |
21
|
anbi1d |
|
23 |
14 22
|
bitr2d |
|
24 |
1 23
|
spcev |
|
25 |
11 24
|
syl |
|
26 |
|
df-rex |
|
27 |
|
rabid |
|
28 |
27
|
anbi1i |
|
29 |
28
|
exbii |
|
30 |
26 29
|
bitri |
|
31 |
25 30
|
sylibr |
|
32 |
|
fvex |
|
33 |
|
eqeq1 |
|
34 |
33
|
rexbidv |
|
35 |
32 34
|
spcev |
|
36 |
31 35
|
syl |
|
37 |
|
abn0 |
|
38 |
36 37
|
sylibr |
|
39 |
|
onint |
|
40 |
9 38 39
|
sylancr |
|
41 |
4 40
|
eqeltrid |
|
42 |
2 41
|
eqeltrd |
|
43 |
|
fvex |
|
44 |
|
eqeq1 |
|
45 |
44
|
rexbidv |
|
46 |
43 45
|
elab |
|
47 |
42 46
|
sylib |
|
48 |
|
df-rex |
|
49 |
47 48
|
sylib |
|
50 |
|
simprl |
|
51 |
50 27
|
sylib |
|
52 |
51
|
simpld |
|
53 |
52
|
elpwid |
|
54 |
|
simpl |
|
55 |
|
vex |
|
56 |
|
limord |
|
57 |
|
ordsson |
|
58 |
56 57
|
syl |
|
59 |
|
sstr |
|
60 |
58 59
|
sylan2 |
|
61 |
|
onssnum |
|
62 |
55 60 61
|
sylancr |
|
63 |
|
cardid2 |
|
64 |
62 63
|
syl |
|
65 |
64
|
ensymd |
|
66 |
53 54 65
|
syl2anc |
|
67 |
|
simprr |
|
68 |
66 67
|
breqtrrd |
|
69 |
51
|
simprd |
|
70 |
53 68 69
|
3jca |
|
71 |
70
|
ex |
|
72 |
71
|
eximdv |
|
73 |
49 72
|
mpd |
|