| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cfss.1 |
|
| 2 |
1
|
cflim3 |
|
| 3 |
|
fvex |
|
| 4 |
3
|
dfiin2 |
|
| 5 |
|
cardon |
|
| 6 |
|
eleq1 |
|
| 7 |
5 6
|
mpbiri |
|
| 8 |
7
|
rexlimivw |
|
| 9 |
8
|
abssi |
|
| 10 |
|
limuni |
|
| 11 |
10
|
eqcomd |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eqcomd |
|
| 14 |
13
|
biantrud |
|
| 15 |
|
unieq |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
1
|
pwid |
|
| 18 |
|
eleq1 |
|
| 19 |
17 18
|
mpbiri |
|
| 20 |
19
|
biantrurd |
|
| 21 |
16 20
|
bitr3d |
|
| 22 |
21
|
anbi1d |
|
| 23 |
14 22
|
bitr2d |
|
| 24 |
1 23
|
spcev |
|
| 25 |
11 24
|
syl |
|
| 26 |
|
df-rex |
|
| 27 |
|
rabid |
|
| 28 |
27
|
anbi1i |
|
| 29 |
28
|
exbii |
|
| 30 |
26 29
|
bitri |
|
| 31 |
25 30
|
sylibr |
|
| 32 |
|
fvex |
|
| 33 |
|
eqeq1 |
|
| 34 |
33
|
rexbidv |
|
| 35 |
32 34
|
spcev |
|
| 36 |
31 35
|
syl |
|
| 37 |
|
abn0 |
|
| 38 |
36 37
|
sylibr |
|
| 39 |
|
onint |
|
| 40 |
9 38 39
|
sylancr |
|
| 41 |
4 40
|
eqeltrid |
|
| 42 |
2 41
|
eqeltrd |
|
| 43 |
|
fvex |
|
| 44 |
|
eqeq1 |
|
| 45 |
44
|
rexbidv |
|
| 46 |
43 45
|
elab |
|
| 47 |
42 46
|
sylib |
|
| 48 |
|
df-rex |
|
| 49 |
47 48
|
sylib |
|
| 50 |
|
simprl |
|
| 51 |
50 27
|
sylib |
|
| 52 |
51
|
simpld |
|
| 53 |
52
|
elpwid |
|
| 54 |
|
simpl |
|
| 55 |
|
vex |
|
| 56 |
|
limord |
|
| 57 |
|
ordsson |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
sstr |
|
| 60 |
58 59
|
sylan2 |
|
| 61 |
|
onssnum |
|
| 62 |
55 60 61
|
sylancr |
|
| 63 |
|
cardid2 |
|
| 64 |
62 63
|
syl |
|
| 65 |
64
|
ensymd |
|
| 66 |
53 54 65
|
syl2anc |
|
| 67 |
|
simprr |
|
| 68 |
66 67
|
breqtrrd |
|
| 69 |
51
|
simprd |
|
| 70 |
53 68 69
|
3jca |
|
| 71 |
70
|
ex |
|
| 72 |
71
|
eximdv |
|
| 73 |
49 72
|
mpd |
|