Metamath Proof Explorer


Theorem cfss

Description: There is a cofinal subset of A of cardinality ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypothesis cfss.1 A V
Assertion cfss Lim A x x A x cf A x = A

Proof

Step Hyp Ref Expression
1 cfss.1 A V
2 1 cflim3 Lim A cf A = x x 𝒫 A | x = A card x
3 fvex card x V
4 3 dfiin2 x x 𝒫 A | x = A card x = y | x x 𝒫 A | x = A y = card x
5 cardon card x On
6 eleq1 y = card x y On card x On
7 5 6 mpbiri y = card x y On
8 7 rexlimivw x x 𝒫 A | x = A y = card x y On
9 8 abssi y | x x 𝒫 A | x = A y = card x On
10 limuni Lim A A = A
11 10 eqcomd Lim A A = A
12 fveq2 x = A card x = card A
13 12 eqcomd x = A card A = card x
14 13 biantrud x = A A = A A = A card A = card x
15 unieq x = A x = A
16 15 eqeq1d x = A x = A A = A
17 1 pwid A 𝒫 A
18 eleq1 x = A x 𝒫 A A 𝒫 A
19 17 18 mpbiri x = A x 𝒫 A
20 19 biantrurd x = A x = A x 𝒫 A x = A
21 16 20 bitr3d x = A A = A x 𝒫 A x = A
22 21 anbi1d x = A A = A card A = card x x 𝒫 A x = A card A = card x
23 14 22 bitr2d x = A x 𝒫 A x = A card A = card x A = A
24 1 23 spcev A = A x x 𝒫 A x = A card A = card x
25 11 24 syl Lim A x x 𝒫 A x = A card A = card x
26 df-rex x x 𝒫 A | x = A card A = card x x x x 𝒫 A | x = A card A = card x
27 rabid x x 𝒫 A | x = A x 𝒫 A x = A
28 27 anbi1i x x 𝒫 A | x = A card A = card x x 𝒫 A x = A card A = card x
29 28 exbii x x x 𝒫 A | x = A card A = card x x x 𝒫 A x = A card A = card x
30 26 29 bitri x x 𝒫 A | x = A card A = card x x x 𝒫 A x = A card A = card x
31 25 30 sylibr Lim A x x 𝒫 A | x = A card A = card x
32 fvex card A V
33 eqeq1 y = card A y = card x card A = card x
34 33 rexbidv y = card A x x 𝒫 A | x = A y = card x x x 𝒫 A | x = A card A = card x
35 32 34 spcev x x 𝒫 A | x = A card A = card x y x x 𝒫 A | x = A y = card x
36 31 35 syl Lim A y x x 𝒫 A | x = A y = card x
37 abn0 y | x x 𝒫 A | x = A y = card x y x x 𝒫 A | x = A y = card x
38 36 37 sylibr Lim A y | x x 𝒫 A | x = A y = card x
39 onint y | x x 𝒫 A | x = A y = card x On y | x x 𝒫 A | x = A y = card x y | x x 𝒫 A | x = A y = card x y | x x 𝒫 A | x = A y = card x
40 9 38 39 sylancr Lim A y | x x 𝒫 A | x = A y = card x y | x x 𝒫 A | x = A y = card x
41 4 40 eqeltrid Lim A x x 𝒫 A | x = A card x y | x x 𝒫 A | x = A y = card x
42 2 41 eqeltrd Lim A cf A y | x x 𝒫 A | x = A y = card x
43 fvex cf A V
44 eqeq1 y = cf A y = card x cf A = card x
45 44 rexbidv y = cf A x x 𝒫 A | x = A y = card x x x 𝒫 A | x = A cf A = card x
46 43 45 elab cf A y | x x 𝒫 A | x = A y = card x x x 𝒫 A | x = A cf A = card x
47 42 46 sylib Lim A x x 𝒫 A | x = A cf A = card x
48 df-rex x x 𝒫 A | x = A cf A = card x x x x 𝒫 A | x = A cf A = card x
49 47 48 sylib Lim A x x x 𝒫 A | x = A cf A = card x
50 simprl Lim A x x 𝒫 A | x = A cf A = card x x x 𝒫 A | x = A
51 50 27 sylib Lim A x x 𝒫 A | x = A cf A = card x x 𝒫 A x = A
52 51 simpld Lim A x x 𝒫 A | x = A cf A = card x x 𝒫 A
53 52 elpwid Lim A x x 𝒫 A | x = A cf A = card x x A
54 simpl Lim A x x 𝒫 A | x = A cf A = card x Lim A
55 vex x V
56 limord Lim A Ord A
57 ordsson Ord A A On
58 56 57 syl Lim A A On
59 sstr x A A On x On
60 58 59 sylan2 x A Lim A x On
61 onssnum x V x On x dom card
62 55 60 61 sylancr x A Lim A x dom card
63 cardid2 x dom card card x x
64 62 63 syl x A Lim A card x x
65 64 ensymd x A Lim A x card x
66 53 54 65 syl2anc Lim A x x 𝒫 A | x = A cf A = card x x card x
67 simprr Lim A x x 𝒫 A | x = A cf A = card x cf A = card x
68 66 67 breqtrrd Lim A x x 𝒫 A | x = A cf A = card x x cf A
69 51 simprd Lim A x x 𝒫 A | x = A cf A = card x x = A
70 53 68 69 3jca Lim A x x 𝒫 A | x = A cf A = card x x A x cf A x = A
71 70 ex Lim A x x 𝒫 A | x = A cf A = card x x A x cf A x = A
72 71 eximdv Lim A x x x 𝒫 A | x = A cf A = card x x x A x cf A x = A
73 49 72 mpd Lim A x x A x cf A x = A