Metamath Proof Explorer


Theorem cfval

Description: Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number A is the cardinality (size) of the smallest unbounded subset y of the ordinal number. Unbounded means that for every member of A , there is a member of y that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cfval A On cf A = x | y x = card y y A z A w y z w

Proof

Step Hyp Ref Expression
1 cflem A On x y x = card y y A z A w y z w
2 intexab x y x = card y y A z A w y z w x | y x = card y y A z A w y z w V
3 1 2 sylib A On x | y x = card y y A z A w y z w V
4 sseq2 v = A y v y A
5 raleq v = A z v w y z w z A w y z w
6 4 5 anbi12d v = A y v z v w y z w y A z A w y z w
7 6 anbi2d v = A x = card y y v z v w y z w x = card y y A z A w y z w
8 7 exbidv v = A y x = card y y v z v w y z w y x = card y y A z A w y z w
9 8 abbidv v = A x | y x = card y y v z v w y z w = x | y x = card y y A z A w y z w
10 9 inteqd v = A x | y x = card y y v z v w y z w = x | y x = card y y A z A w y z w
11 df-cf cf = v On x | y x = card y y v z v w y z w
12 10 11 fvmptg A On x | y x = card y y A z A w y z w V cf A = x | y x = card y y A z A w y z w
13 3 12 mpdan A On cf A = x | y x = card y y A z A w y z w