Metamath Proof Explorer


Theorem cfval2

Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion cfval2 A On cf A = x x 𝒫 A | z A w x z w card x

Proof

Step Hyp Ref Expression
1 cfval A On cf A = y | x y = card x x A z A w x z w
2 fvex card x V
3 2 dfiin2 x x 𝒫 A | z A w x z w card x = y | x x 𝒫 A | z A w x z w y = card x
4 df-rex x x 𝒫 A | z A w x z w y = card x x x x 𝒫 A | z A w x z w y = card x
5 rabid x x 𝒫 A | z A w x z w x 𝒫 A z A w x z w
6 velpw x 𝒫 A x A
7 6 anbi1i x 𝒫 A z A w x z w x A z A w x z w
8 5 7 bitri x x 𝒫 A | z A w x z w x A z A w x z w
9 8 anbi2ci x x 𝒫 A | z A w x z w y = card x y = card x x A z A w x z w
10 9 exbii x x x 𝒫 A | z A w x z w y = card x x y = card x x A z A w x z w
11 4 10 bitri x x 𝒫 A | z A w x z w y = card x x y = card x x A z A w x z w
12 11 abbii y | x x 𝒫 A | z A w x z w y = card x = y | x y = card x x A z A w x z w
13 12 inteqi y | x x 𝒫 A | z A w x z w y = card x = y | x y = card x x A z A w x z w
14 3 13 eqtr2i y | x y = card x x A z A w x z w = x x 𝒫 A | z A w x z w card x
15 1 14 eqtrdi A On cf A = x x 𝒫 A | z A w x z w card x