Metamath Proof Explorer


Theorem cgr3id

Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P=BaseG
tgcgrxfr.m -˙=distG
tgcgrxfr.i I=ItvG
tgcgrxfr.r ˙=𝒢G
tgcgrxfr.g φG𝒢Tarski
tgbtwnxfr.a φAP
tgbtwnxfr.b φBP
tgbtwnxfr.c φCP
Assertion cgr3id φ⟨“ABC”⟩˙⟨“ABC”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P=BaseG
2 tgcgrxfr.m -˙=distG
3 tgcgrxfr.i I=ItvG
4 tgcgrxfr.r ˙=𝒢G
5 tgcgrxfr.g φG𝒢Tarski
6 tgbtwnxfr.a φAP
7 tgbtwnxfr.b φBP
8 tgbtwnxfr.c φCP
9 eqidd φA-˙B=A-˙B
10 eqidd φB-˙C=B-˙C
11 eqidd φC-˙A=C-˙A
12 1 2 4 5 6 7 8 6 7 8 9 10 11 trgcgr φ⟨“ABC”⟩˙⟨“ABC”⟩