Metamath Proof Explorer


Theorem cgr3id

Description: Reflexivity law for three-place congruence. (Contributed by Thierry Arnoux, 28-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P = Base G
tgcgrxfr.m - ˙ = dist G
tgcgrxfr.i I = Itv G
tgcgrxfr.r ˙ = 𝒢 G
tgcgrxfr.g φ G 𝒢 Tarski
tgbtwnxfr.a φ A P
tgbtwnxfr.b φ B P
tgbtwnxfr.c φ C P
Assertion cgr3id φ ⟨“ ABC ”⟩ ˙ ⟨“ ABC ”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P = Base G
2 tgcgrxfr.m - ˙ = dist G
3 tgcgrxfr.i I = Itv G
4 tgcgrxfr.r ˙ = 𝒢 G
5 tgcgrxfr.g φ G 𝒢 Tarski
6 tgbtwnxfr.a φ A P
7 tgbtwnxfr.b φ B P
8 tgbtwnxfr.c φ C P
9 eqidd φ A - ˙ B = A - ˙ B
10 eqidd φ B - ˙ C = B - ˙ C
11 eqidd φ C - ˙ A = C - ˙ A
12 1 2 4 5 6 7 8 6 7 8 9 10 11 trgcgr φ ⟨“ ABC ”⟩ ˙ ⟨“ ABC ”⟩