Metamath Proof Explorer
Description: Reflexivity law for three-place congruence. (Contributed by Thierry
Arnoux, 28-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tgcgrxfr.p |
|
|
|
tgcgrxfr.m |
|
|
|
tgcgrxfr.i |
|
|
|
tgcgrxfr.r |
|
|
|
tgcgrxfr.g |
|
|
|
tgbtwnxfr.a |
|
|
|
tgbtwnxfr.b |
|
|
|
tgbtwnxfr.c |
|
|
Assertion |
cgr3id |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
tgcgrxfr.p |
|
2 |
|
tgcgrxfr.m |
|
3 |
|
tgcgrxfr.i |
|
4 |
|
tgcgrxfr.r |
|
5 |
|
tgcgrxfr.g |
|
6 |
|
tgbtwnxfr.a |
|
7 |
|
tgbtwnxfr.b |
|
8 |
|
tgbtwnxfr.c |
|
9 |
|
eqidd |
|
10 |
|
eqidd |
|
11 |
|
eqidd |
|
12 |
1 2 4 5 6 7 8 6 7 8 9 10 11
|
trgcgr |
|