Metamath Proof Explorer


Theorem cgr3tr

Description: Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P = Base G
tgcgrxfr.m - ˙ = dist G
tgcgrxfr.i I = Itv G
tgcgrxfr.r ˙ = 𝒢 G
tgcgrxfr.g φ G 𝒢 Tarski
tgbtwnxfr.a φ A P
tgbtwnxfr.b φ B P
tgbtwnxfr.c φ C P
tgbtwnxfr.d φ D P
tgbtwnxfr.e φ E P
tgbtwnxfr.f φ F P
tgbtwnxfr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
cgr3tr.j φ J P
cgr3tr.k φ K P
cgr3tr.l φ L P
cgr3tr.1 φ ⟨“ DEF ”⟩ ˙ ⟨“ JKL ”⟩
Assertion cgr3tr φ ⟨“ ABC ”⟩ ˙ ⟨“ JKL ”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P = Base G
2 tgcgrxfr.m - ˙ = dist G
3 tgcgrxfr.i I = Itv G
4 tgcgrxfr.r ˙ = 𝒢 G
5 tgcgrxfr.g φ G 𝒢 Tarski
6 tgbtwnxfr.a φ A P
7 tgbtwnxfr.b φ B P
8 tgbtwnxfr.c φ C P
9 tgbtwnxfr.d φ D P
10 tgbtwnxfr.e φ E P
11 tgbtwnxfr.f φ F P
12 tgbtwnxfr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
13 cgr3tr.j φ J P
14 cgr3tr.k φ K P
15 cgr3tr.l φ L P
16 cgr3tr.1 φ ⟨“ DEF ”⟩ ˙ ⟨“ JKL ”⟩
17 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp1 φ A - ˙ B = D - ˙ E
18 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp1 φ D - ˙ E = J - ˙ K
19 17 18 eqtrd φ A - ˙ B = J - ˙ K
20 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp2 φ B - ˙ C = E - ˙ F
21 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp2 φ E - ˙ F = K - ˙ L
22 20 21 eqtrd φ B - ˙ C = K - ˙ L
23 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp3 φ C - ˙ A = F - ˙ D
24 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp3 φ F - ˙ D = L - ˙ J
25 23 24 eqtrd φ C - ˙ A = L - ˙ J
26 1 2 4 5 6 7 8 13 14 15 19 22 25 trgcgr φ ⟨“ ABC ”⟩ ˙ ⟨“ JKL ”⟩