Metamath Proof Explorer


Theorem cgr3tr

Description: Transitivity law for three-place congruence. (Contributed by Thierry Arnoux, 27-Apr-2019)

Ref Expression
Hypotheses tgcgrxfr.p P=BaseG
tgcgrxfr.m -˙=distG
tgcgrxfr.i I=ItvG
tgcgrxfr.r ˙=𝒢G
tgcgrxfr.g φG𝒢Tarski
tgbtwnxfr.a φAP
tgbtwnxfr.b φBP
tgbtwnxfr.c φCP
tgbtwnxfr.d φDP
tgbtwnxfr.e φEP
tgbtwnxfr.f φFP
tgbtwnxfr.2 φ⟨“ABC”⟩˙⟨“DEF”⟩
cgr3tr.j φJP
cgr3tr.k φKP
cgr3tr.l φLP
cgr3tr.1 φ⟨“DEF”⟩˙⟨“JKL”⟩
Assertion cgr3tr φ⟨“ABC”⟩˙⟨“JKL”⟩

Proof

Step Hyp Ref Expression
1 tgcgrxfr.p P=BaseG
2 tgcgrxfr.m -˙=distG
3 tgcgrxfr.i I=ItvG
4 tgcgrxfr.r ˙=𝒢G
5 tgcgrxfr.g φG𝒢Tarski
6 tgbtwnxfr.a φAP
7 tgbtwnxfr.b φBP
8 tgbtwnxfr.c φCP
9 tgbtwnxfr.d φDP
10 tgbtwnxfr.e φEP
11 tgbtwnxfr.f φFP
12 tgbtwnxfr.2 φ⟨“ABC”⟩˙⟨“DEF”⟩
13 cgr3tr.j φJP
14 cgr3tr.k φKP
15 cgr3tr.l φLP
16 cgr3tr.1 φ⟨“DEF”⟩˙⟨“JKL”⟩
17 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp1 φA-˙B=D-˙E
18 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp1 φD-˙E=J-˙K
19 17 18 eqtrd φA-˙B=J-˙K
20 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp2 φB-˙C=E-˙F
21 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp2 φE-˙F=K-˙L
22 20 21 eqtrd φB-˙C=K-˙L
23 1 2 3 4 5 6 7 8 9 10 11 12 cgr3simp3 φC-˙A=F-˙D
24 1 2 3 4 5 9 10 11 13 14 15 16 cgr3simp3 φF-˙D=L-˙J
25 23 24 eqtrd φC-˙A=L-˙J
26 1 2 4 5 6 7 8 13 14 15 19 22 25 trgcgr φ⟨“ABC”⟩˙⟨“JKL”⟩