Metamath Proof Explorer


Theorem cgracol

Description: Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses cgracol.p P = Base G
cgracol.i I = Itv G
cgracol.m - ˙ = dist G
cgracol.g φ G 𝒢 Tarski
cgracol.a φ A P
cgracol.b φ B P
cgracol.c φ C P
cgracol.d φ D P
cgracol.e φ E P
cgracol.f φ F P
cgracol.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
cgracol.l L = Line 𝒢 G
cgracol.2 φ C A L B A = B
Assertion cgracol φ F D L E D = E

Proof

Step Hyp Ref Expression
1 cgracol.p P = Base G
2 cgracol.i I = Itv G
3 cgracol.m - ˙ = dist G
4 cgracol.g φ G 𝒢 Tarski
5 cgracol.a φ A P
6 cgracol.b φ B P
7 cgracol.c φ C P
8 cgracol.d φ D P
9 cgracol.e φ E P
10 cgracol.f φ F P
11 cgracol.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
12 cgracol.l L = Line 𝒢 G
13 cgracol.2 φ C A L B A = B
14 4 adantr φ C A I B A C I B G 𝒢 Tarski
15 5 adantr φ C A I B A C I B A P
16 6 adantr φ C A I B A C I B B P
17 7 adantr φ C A I B A C I B C P
18 8 adantr φ C A I B A C I B D P
19 9 adantr φ C A I B A C I B E P
20 10 adantr φ C A I B A C I B F P
21 11 adantr φ C A I B A C I B ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
22 eqid hl 𝒢 G = hl 𝒢 G
23 1 2 22 4 5 6 7 8 9 10 11 cgrane2 φ B C
24 23 necomd φ C B
25 24 adantr φ C A I B C B
26 1 2 22 4 5 6 7 8 9 10 11 cgrane1 φ A B
27 26 adantr φ C A I B A B
28 4 adantr φ C A I B G 𝒢 Tarski
29 5 adantr φ C A I B A P
30 7 adantr φ C A I B C P
31 6 adantr φ C A I B B P
32 simpr φ C A I B C A I B
33 1 3 2 28 29 30 31 32 tgbtwncom φ C A I B C B I A
34 33 orcd φ C A I B C B I A A B I C
35 25 27 34 3jca φ C A I B C B A B C B I A A B I C
36 24 adantr φ A C I B C B
37 26 adantr φ A C I B A B
38 4 adantr φ A C I B G 𝒢 Tarski
39 7 adantr φ A C I B C P
40 5 adantr φ A C I B A P
41 6 adantr φ A C I B B P
42 simpr φ A C I B A C I B
43 1 3 2 38 39 40 41 42 tgbtwncom φ A C I B A B I C
44 43 olcd φ A C I B C B I A A B I C
45 36 37 44 3jca φ A C I B C B A B C B I A A B I C
46 35 45 jaodan φ C A I B A C I B C B A B C B I A A B I C
47 1 2 22 7 5 6 4 ishlg φ C hl 𝒢 G B A C B A B C B I A A B I C
48 47 adantr φ C A I B A C I B C hl 𝒢 G B A C B A B C B I A A B I C
49 46 48 mpbird φ C A I B A C I B C hl 𝒢 G B A
50 1 2 22 17 15 16 14 49 hlcomd φ C A I B A C I B A hl 𝒢 G B C
51 1 2 3 14 15 16 17 18 19 20 21 22 50 cgrahl φ C A I B A C I B D hl 𝒢 G E F
52 1 2 22 18 20 19 14 ishlg φ C A I B A C I B D hl 𝒢 G E F D E F E D E I F F E I D
53 51 52 mpbid φ C A I B A C I B D E F E D E I F F E I D
54 53 simp3d φ C A I B A C I B D E I F F E I D
55 4 adantr φ D E I F G 𝒢 Tarski
56 9 adantr φ D E I F E P
57 8 adantr φ D E I F D P
58 10 adantr φ D E I F F P
59 simpr φ D E I F D E I F
60 1 3 2 55 56 57 58 59 tgbtwncom φ D E I F D F I E
61 60 olcd φ D E I F F D I E D F I E
62 4 adantr φ F E I D G 𝒢 Tarski
63 9 adantr φ F E I D E P
64 10 adantr φ F E I D F P
65 8 adantr φ F E I D D P
66 simpr φ F E I D F E I D
67 1 3 2 62 63 64 65 66 tgbtwncom φ F E I D F D I E
68 67 orcd φ F E I D F D I E D F I E
69 61 68 jaodan φ D E I F F E I D F D I E D F I E
70 54 69 syldan φ C A I B A C I B F D I E D F I E
71 70 orcd φ C A I B A C I B F D I E D F I E E D I F
72 df-3or F D I E D F I E E D I F F D I E D F I E E D I F
73 71 72 sylibr φ C A I B A C I B F D I E D F I E E D I F
74 1 2 4 22 5 6 7 8 9 10 11 cgracom φ ⟨“ DEF ”⟩ 𝒢 G ⟨“ ABC ”⟩
75 1 2 22 4 8 9 10 5 6 7 74 cgrane1 φ D E
76 1 12 2 4 8 9 75 10 tgellng φ F D L E F D I E D F I E E D I F
77 76 adantr φ C A I B A C I B F D L E F D I E D F I E E D I F
78 73 77 mpbird φ C A I B A C I B F D L E
79 78 orcd φ C A I B A C I B F D L E D = E
80 4 adantr φ B A I C G 𝒢 Tarski
81 8 adantr φ B A I C D P
82 9 adantr φ B A I C E P
83 10 adantr φ B A I C F P
84 5 adantr φ B A I C A P
85 6 adantr φ B A I C B P
86 7 adantr φ B A I C C P
87 11 adantr φ B A I C ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
88 simpr φ B A I C B A I C
89 1 2 3 80 84 85 86 81 82 83 87 88 cgrabtwn φ B A I C E D I F
90 1 12 2 80 81 82 83 89 btwncolg3 φ B A I C F D L E D = E
91 26 neneqd φ ¬ A = B
92 13 orcomd φ A = B C A L B
93 92 ord φ ¬ A = B C A L B
94 91 93 mpd φ C A L B
95 1 12 2 4 5 6 26 7 tgellng φ C A L B C A I B A C I B B A I C
96 94 95 mpbid φ C A I B A C I B B A I C
97 df-3or C A I B A C I B B A I C C A I B A C I B B A I C
98 96 97 sylib φ C A I B A C I B B A I C
99 79 90 98 mpjaodan φ F D L E D = E