Metamath Proof Explorer


Theorem cgraid

Description: Angle congruence is reflexive. Theorem 11.6 of Schwabhauser p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020)

Ref Expression
Hypotheses cgraid.p P = Base G
cgraid.i I = Itv G
cgraid.g φ G 𝒢 Tarski
cgraid.k K = hl 𝒢 G
cgraid.a φ A P
cgraid.b φ B P
cgraid.c φ C P
cgraid.1 φ A B
cgraid.2 φ B C
Assertion cgraid φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ABC ”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P = Base G
2 cgraid.i I = Itv G
3 cgraid.g φ G 𝒢 Tarski
4 cgraid.k K = hl 𝒢 G
5 cgraid.a φ A P
6 cgraid.b φ B P
7 cgraid.c φ C P
8 cgraid.1 φ A B
9 cgraid.2 φ B C
10 eqid dist G = dist G
11 eqid 𝒢 G = 𝒢 G
12 1 10 2 11 3 5 6 7 cgr3id φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ABC ”⟩
13 1 2 4 5 5 6 3 8 hlid φ A K B A
14 9 necomd φ C B
15 1 2 4 7 5 6 3 14 hlid φ C K B C
16 1 2 4 3 5 6 7 5 6 7 5 7 12 13 15 iscgrad φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ ABC ”⟩