Metamath Proof Explorer


Theorem cgrancol

Description: Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020)

Ref Expression
Hypotheses cgracol.p P = Base G
cgracol.i I = Itv G
cgracol.m - ˙ = dist G
cgracol.g φ G 𝒢 Tarski
cgracol.a φ A P
cgracol.b φ B P
cgracol.c φ C P
cgracol.d φ D P
cgracol.e φ E P
cgracol.f φ F P
cgracol.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
cgrancol.l L = Line 𝒢 G
cgrancol.2 φ ¬ C A L B A = B
Assertion cgrancol φ ¬ F D L E D = E

Proof

Step Hyp Ref Expression
1 cgracol.p P = Base G
2 cgracol.i I = Itv G
3 cgracol.m - ˙ = dist G
4 cgracol.g φ G 𝒢 Tarski
5 cgracol.a φ A P
6 cgracol.b φ B P
7 cgracol.c φ C P
8 cgracol.d φ D P
9 cgracol.e φ E P
10 cgracol.f φ F P
11 cgracol.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
12 cgrancol.l L = Line 𝒢 G
13 cgrancol.2 φ ¬ C A L B A = B
14 4 adantr φ F D L E D = E G 𝒢 Tarski
15 8 adantr φ F D L E D = E D P
16 9 adantr φ F D L E D = E E P
17 10 adantr φ F D L E D = E F P
18 5 adantr φ F D L E D = E A P
19 6 adantr φ F D L E D = E B P
20 7 adantr φ F D L E D = E C P
21 eqid hl 𝒢 G = hl 𝒢 G
22 11 adantr φ F D L E D = E ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
23 1 2 14 21 18 19 20 15 16 17 22 cgracom φ F D L E D = E ⟨“ DEF ”⟩ 𝒢 G ⟨“ ABC ”⟩
24 simpr φ F D L E D = E F D L E D = E
25 1 2 3 14 15 16 17 18 19 20 23 12 24 cgracol φ F D L E D = E C A L B A = B
26 13 25 mtand φ ¬ F D L E D = E