Metamath Proof Explorer


Theorem cgratr

Description: Angle congruence is transitive. Theorem 11.8 of Schwabhauser p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020)

Ref Expression
Hypotheses cgraid.p P = Base G
cgraid.i I = Itv G
cgraid.g φ G 𝒢 Tarski
cgraid.k K = hl 𝒢 G
cgraid.a φ A P
cgraid.b φ B P
cgraid.c φ C P
cgracom.d φ D P
cgracom.e φ E P
cgracom.f φ F P
cgracom.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
cgratr.h φ H P
cgratr.i φ U P
cgratr.j φ J P
cgratr.1 φ ⟨“ DEF ”⟩ 𝒢 G ⟨“ HUJ ”⟩
Assertion cgratr φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ HUJ ”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P = Base G
2 cgraid.i I = Itv G
3 cgraid.g φ G 𝒢 Tarski
4 cgraid.k K = hl 𝒢 G
5 cgraid.a φ A P
6 cgraid.b φ B P
7 cgraid.c φ C P
8 cgracom.d φ D P
9 cgracom.e φ E P
10 cgracom.f φ F P
11 cgracom.1 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
12 cgratr.h φ H P
13 cgratr.i φ U P
14 cgratr.j φ J P
15 cgratr.1 φ ⟨“ DEF ”⟩ 𝒢 G ⟨“ HUJ ”⟩
16 eqid dist G = dist G
17 eqid 𝒢 G = 𝒢 G
18 3 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C G 𝒢 Tarski
19 5 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C A P
20 6 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C B P
21 7 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C C P
22 simpllr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C x P
23 13 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C U P
24 simplr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C y P
25 simprlr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C U dist G x = B dist G A
26 25 eqcomd φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C B dist G A = U dist G x
27 1 16 2 18 20 19 23 22 26 tgcgrcomlr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C A dist G B = x dist G U
28 simprrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C U dist G y = B dist G C
29 28 eqcomd φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C B dist G C = U dist G y
30 18 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F G 𝒢 Tarski
31 19 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F A P
32 20 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F B P
33 21 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F C P
34 simpllr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F u P
35 9 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F E P
36 simplr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F v P
37 simpr1 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩
38 1 16 2 17 30 31 32 33 34 35 36 37 cgr3simp3 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F C dist G A = v dist G u
39 22 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F x P
40 24 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F y P
41 8 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F D P
42 10 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F F P
43 23 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F U P
44 14 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F J P
45 12 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F H P
46 15 ad6antr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F ⟨“ DEF ”⟩ 𝒢 G ⟨“ HUJ ”⟩
47 simprll φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C x K U H
48 47 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F x K U H
49 1 2 4 30 41 35 42 45 43 44 46 39 48 cgrahl1 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F ⟨“ DEF ”⟩ 𝒢 G ⟨“ xUJ ”⟩
50 simprrl φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C y K U J
51 50 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F y K U J
52 1 2 4 30 41 35 42 39 43 44 49 40 51 cgrahl2 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F ⟨“ DEF ”⟩ 𝒢 G ⟨“ xUy ”⟩
53 simpr2 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F u K E D
54 simpr3 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F v K E F
55 1 16 2 17 30 31 32 33 34 35 36 37 cgr3simp1 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F A dist G B = u dist G E
56 55 eqcomd φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F u dist G E = A dist G B
57 1 16 2 30 34 35 31 32 56 tgcgrcomlr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F E dist G u = B dist G A
58 26 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F B dist G A = U dist G x
59 57 58 eqtrd φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F E dist G u = U dist G x
60 1 16 2 17 30 31 32 33 34 35 36 37 cgr3simp2 φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F B dist G C = E dist G v
61 29 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F B dist G C = U dist G y
62 60 61 eqtr3d φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F E dist G v = U dist G y
63 1 2 4 30 41 35 42 39 43 40 52 34 16 36 53 54 59 62 cgracgr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F u dist G v = x dist G y
64 1 16 2 30 34 36 39 40 63 tgcgrcomlr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F v dist G u = y dist G x
65 38 64 eqtrd φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F C dist G A = y dist G x
66 1 2 4 3 5 6 7 8 9 10 iscgra φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩ u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F
67 11 66 mpbid φ u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F
68 67 ad3antrrr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C u P v P ⟨“ ABC ”⟩ 𝒢 G ⟨“ uEv ”⟩ u K E D v K E F
69 65 68 r19.29vva φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C C dist G A = y dist G x
70 1 16 17 18 19 20 21 22 23 24 27 29 69 trgcgr φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C ⟨“ ABC ”⟩ 𝒢 G ⟨“ xUy ”⟩
71 70 47 50 3jca φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C ⟨“ ABC ”⟩ 𝒢 G ⟨“ xUy ”⟩ x K U H y K U J
72 1 2 4 3 8 9 10 12 13 14 15 cgrane3 φ U H
73 72 necomd φ H U
74 1 2 4 3 5 6 7 8 9 10 11 cgrane1 φ A B
75 74 necomd φ B A
76 1 2 4 13 6 5 3 12 16 73 75 hlcgrex φ x P x K U H U dist G x = B dist G A
77 1 2 4 3 8 9 10 12 13 14 15 cgrane4 φ U J
78 77 necomd φ J U
79 1 2 4 3 5 6 7 8 9 10 11 cgrane2 φ B C
80 1 2 4 13 6 7 3 14 16 78 79 hlcgrex φ y P y K U J U dist G y = B dist G C
81 reeanv x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C x P x K U H U dist G x = B dist G A y P y K U J U dist G y = B dist G C
82 76 80 81 sylanbrc φ x P y P x K U H U dist G x = B dist G A y K U J U dist G y = B dist G C
83 71 82 reximddv2 φ x P y P ⟨“ ABC ”⟩ 𝒢 G ⟨“ xUy ”⟩ x K U H y K U J
84 1 2 4 3 5 6 7 12 13 14 iscgra φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ HUJ ”⟩ x P y P ⟨“ ABC ”⟩ 𝒢 G ⟨“ xUy ”⟩ x K U H y K U J
85 83 84 mpbird φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ HUJ ”⟩