Metamath Proof Explorer


Theorem cgrcgra

Description: Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses cgraid.p P = Base G
cgraid.i I = Itv G
cgraid.g φ G 𝒢 Tarski
cgraid.k K = hl 𝒢 G
cgraid.a φ A P
cgraid.b φ B P
cgraid.c φ C P
cgracom.d φ D P
cgracom.e φ E P
cgracom.f φ F P
cgrcgra.1 φ A B
cgrcgra.2 φ B C
cgrcgra.3 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
Assertion cgrcgra φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩

Proof

Step Hyp Ref Expression
1 cgraid.p P = Base G
2 cgraid.i I = Itv G
3 cgraid.g φ G 𝒢 Tarski
4 cgraid.k K = hl 𝒢 G
5 cgraid.a φ A P
6 cgraid.b φ B P
7 cgraid.c φ C P
8 cgracom.d φ D P
9 cgracom.e φ E P
10 cgracom.f φ F P
11 cgrcgra.1 φ A B
12 cgrcgra.2 φ B C
13 cgrcgra.3 φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩
14 eqid dist G = dist G
15 eqid 𝒢 G = 𝒢 G
16 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp1 φ A dist G B = D dist G E
17 1 14 2 3 5 6 8 9 16 11 tgcgrneq φ D E
18 1 2 4 8 5 9 3 17 hlid φ D K E D
19 1 14 2 15 3 5 6 7 8 9 10 13 cgr3simp2 φ B dist G C = E dist G F
20 1 14 2 3 6 7 9 10 19 tgcgrcomlr φ C dist G B = F dist G E
21 12 necomd φ C B
22 1 14 2 3 7 6 10 9 20 21 tgcgrneq φ F E
23 1 2 4 10 5 9 3 22 hlid φ F K E F
24 1 2 4 3 5 6 7 8 9 10 8 10 13 18 23 iscgrad φ ⟨“ ABC ”⟩ 𝒢 G ⟨“ DEF ”⟩