Step |
Hyp |
Ref |
Expression |
1 |
|
cgsex4g.1 |
|
2 |
|
cgsex4g.2 |
|
3 |
2
|
biimpa |
|
4 |
3
|
exlimivv |
|
5 |
4
|
exlimivv |
|
6 |
|
elisset |
|
7 |
|
elisset |
|
8 |
6 7
|
anim12i |
|
9 |
|
exdistrv |
|
10 |
8 9
|
sylibr |
|
11 |
|
elisset |
|
12 |
|
elisset |
|
13 |
11 12
|
anim12i |
|
14 |
|
exdistrv |
|
15 |
13 14
|
sylibr |
|
16 |
10 15
|
anim12i |
|
17 |
|
eqeq1 |
|
18 |
17
|
anbi1d |
|
19 |
18
|
anbi2d |
|
20 |
19
|
exbidv |
|
21 |
20
|
notbid |
|
22 |
21
|
alcomiw |
|
23 |
|
eqeq1 |
|
24 |
23
|
anbi2d |
|
25 |
24
|
anbi1d |
|
26 |
25
|
exbidv |
|
27 |
26
|
notbid |
|
28 |
27
|
alcomiw |
|
29 |
22 28
|
impbii |
|
30 |
29
|
notbii |
|
31 |
|
2exnaln |
|
32 |
|
2exnaln |
|
33 |
30 31 32
|
3bitr4i |
|
34 |
33
|
exbii |
|
35 |
|
4exdistrv |
|
36 |
34 35
|
bitri |
|
37 |
16 36
|
sylibr |
|
38 |
1
|
2eximi |
|
39 |
38
|
2eximi |
|
40 |
37 39
|
syl |
|
41 |
2
|
biimprcd |
|
42 |
41
|
ancld |
|
43 |
42
|
2eximdv |
|
44 |
43
|
2eximdv |
|
45 |
40 44
|
syl5com |
|
46 |
5 45
|
impbid2 |
|