Metamath Proof Explorer


Theorem cgsex4g

Description: An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 28-Jun-2024) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 21-Mar-2025)

Ref Expression
Hypotheses cgsex4g.1 x = A y = B z = C w = D χ
cgsex4g.2 χ φ ψ
Assertion cgsex4g A R B S C R D S x y z w χ φ ψ

Proof

Step Hyp Ref Expression
1 cgsex4g.1 x = A y = B z = C w = D χ
2 cgsex4g.2 χ φ ψ
3 2 biimpa χ φ ψ
4 3 exlimivv z w χ φ ψ
5 4 exlimivv x y z w χ φ ψ
6 elisset A R x x = A
7 elisset B S y y = B
8 6 7 anim12i A R B S x x = A y y = B
9 elisset C R z z = C
10 elisset D S w w = D
11 9 10 anim12i C R D S z z = C w w = D
12 8 11 anim12i A R B S C R D S x x = A y y = B z z = C w w = D
13 19.42vv z w x = A y = B z = C w = D x = A y = B z w z = C w = D
14 13 2exbii x y z w x = A y = B z = C w = D x y x = A y = B z w z = C w = D
15 19.41vv x y x = A y = B z w z = C w = D x y x = A y = B z w z = C w = D
16 exdistrv x y x = A y = B x x = A y y = B
17 exdistrv z w z = C w = D z z = C w w = D
18 16 17 anbi12i x y x = A y = B z w z = C w = D x x = A y y = B z z = C w w = D
19 14 15 18 3bitri x y z w x = A y = B z = C w = D x x = A y y = B z z = C w w = D
20 12 19 sylibr A R B S C R D S x y z w x = A y = B z = C w = D
21 1 2eximi z w x = A y = B z = C w = D z w χ
22 21 2eximi x y z w x = A y = B z = C w = D x y z w χ
23 20 22 syl A R B S C R D S x y z w χ
24 2 biimprcd ψ χ φ
25 24 ancld ψ χ χ φ
26 25 2eximdv ψ z w χ z w χ φ
27 26 2eximdv ψ x y z w χ x y z w χ φ
28 23 27 syl5com A R B S C R D S ψ x y z w χ φ
29 5 28 impbid2 A R B S C R D S x y z w χ φ ψ