Metamath Proof Explorer


Theorem cgsexg

Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007)

Ref Expression
Hypotheses cgsexg.1 x = A χ
cgsexg.2 χ φ ψ
Assertion cgsexg A V x χ φ ψ

Proof

Step Hyp Ref Expression
1 cgsexg.1 x = A χ
2 cgsexg.2 χ φ ψ
3 2 biimpa χ φ ψ
4 3 exlimiv x χ φ ψ
5 elisset A V x x = A
6 1 eximi x x = A x χ
7 5 6 syl A V x χ
8 2 biimprcd ψ χ φ
9 8 ancld ψ χ χ φ
10 9 eximdv ψ x χ x χ φ
11 7 10 syl5com A V ψ x χ φ
12 4 11 impbid2 A V x χ φ ψ