Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
|
2 |
|
chcoeffeq.b |
|
3 |
|
chcoeffeq.p |
|
4 |
|
chcoeffeq.y |
|
5 |
|
chcoeffeq.r |
|
6 |
|
chcoeffeq.s |
|
7 |
|
chcoeffeq.0 |
|
8 |
|
chcoeffeq.t |
|
9 |
|
chcoeffeq.c |
|
10 |
|
chcoeffeq.k |
|
11 |
|
chcoeffeq.g |
|
12 |
|
chcoeffeq.w |
|
13 |
|
chcoeffeq.1 |
|
14 |
|
chcoeffeq.m |
|
15 |
|
chcoeffeq.u |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26
|
cpmadumatpoly |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26
|
cpmidpmat |
|
32 |
|
eqid |
|
33 |
1 2 32 3 4 19 8 6 17 18 20 21 5
|
cpmadurid |
|
34 |
9
|
fveq1i |
|
35 |
10 34
|
eqtri |
|
36 |
35
|
a1i |
|
37 |
36
|
eqcomd |
|
38 |
37
|
oveq1d |
|
39 |
33 38
|
eqtrd |
|
40 |
|
fveq2 |
|
41 |
|
simpr |
|
42 |
41
|
adantr |
|
43 |
|
simpr |
|
44 |
42 43
|
eqeq12d |
|
45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeqlem |
|
46 |
45
|
adantr |
|
47 |
46
|
adantr |
|
48 |
44 47
|
sylbid |
|
49 |
48
|
exp31 |
|
50 |
49
|
com24 |
|
51 |
40 50
|
syl5 |
|
52 |
51
|
ex |
|
53 |
52
|
com24 |
|
54 |
31 39 53
|
mp2d |
|
55 |
54
|
impl |
|
56 |
55
|
reximdva |
|
57 |
56
|
reximdva |
|
58 |
27 57
|
mpd |
|