| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chcoeffeq.a |
|
| 2 |
|
chcoeffeq.b |
|
| 3 |
|
chcoeffeq.p |
|
| 4 |
|
chcoeffeq.y |
|
| 5 |
|
chcoeffeq.r |
|
| 6 |
|
chcoeffeq.s |
|
| 7 |
|
chcoeffeq.0 |
|
| 8 |
|
chcoeffeq.t |
|
| 9 |
|
chcoeffeq.c |
|
| 10 |
|
chcoeffeq.k |
|
| 11 |
|
chcoeffeq.g |
|
| 12 |
|
chcoeffeq.w |
|
| 13 |
|
chcoeffeq.1 |
|
| 14 |
|
chcoeffeq.m |
|
| 15 |
|
chcoeffeq.u |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26
|
cpmadumatpoly |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26
|
cpmidpmat |
|
| 32 |
|
eqid |
|
| 33 |
1 2 32 3 4 19 8 6 17 18 20 21 5
|
cpmadurid |
|
| 34 |
9
|
fveq1i |
|
| 35 |
10 34
|
eqtri |
|
| 36 |
35
|
a1i |
|
| 37 |
36
|
eqcomd |
|
| 38 |
37
|
oveq1d |
|
| 39 |
33 38
|
eqtrd |
|
| 40 |
|
fveq2 |
|
| 41 |
|
simpr |
|
| 42 |
41
|
adantr |
|
| 43 |
|
simpr |
|
| 44 |
42 43
|
eqeq12d |
|
| 45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
chcoeffeqlem |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
adantr |
|
| 48 |
44 47
|
sylbid |
|
| 49 |
48
|
exp31 |
|
| 50 |
49
|
com24 |
|
| 51 |
40 50
|
syl5 |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
com24 |
|
| 54 |
31 39 53
|
mp2d |
|
| 55 |
54
|
impl |
|
| 56 |
55
|
reximdva |
|
| 57 |
56
|
reximdva |
|
| 58 |
27 57
|
mpd |
|