Step |
Hyp |
Ref |
Expression |
1 |
|
chcoeffeq.a |
|
2 |
|
chcoeffeq.b |
|
3 |
|
chcoeffeq.p |
|
4 |
|
chcoeffeq.y |
|
5 |
|
chcoeffeq.r |
|
6 |
|
chcoeffeq.s |
|
7 |
|
chcoeffeq.0 |
|
8 |
|
chcoeffeq.t |
|
9 |
|
chcoeffeq.c |
|
10 |
|
chcoeffeq.k |
|
11 |
|
chcoeffeq.g |
|
12 |
|
chcoeffeq.w |
|
13 |
|
chcoeffeq.1 |
|
14 |
|
chcoeffeq.m |
|
15 |
|
chcoeffeq.u |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
|
crngring |
|
20 |
1
|
matring |
|
21 |
19 20
|
sylan2 |
|
22 |
21
|
3adant3 |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15
|
cpmadumatpolylem1 |
|
33 |
32
|
anasss |
|
34 |
1 2 3 4 5 6 7 8 11 26
|
chfacfisfcpmat |
|
35 |
19 34
|
syl3anl2 |
|
36 |
35
|
adantr |
|
37 |
|
fvco3 |
|
38 |
37
|
eqcomd |
|
39 |
36 38
|
sylan |
|
40 |
|
elmapi |
|
41 |
40
|
adantl |
|
42 |
41
|
ffvelrnda |
|
43 |
39 42
|
eqeltrd |
|
44 |
43
|
ralrimiva |
|
45 |
33 44
|
mpdan |
|
46 |
19
|
anim2i |
|
47 |
46
|
3adant3 |
|
48 |
47
|
adantr |
|
49 |
1 2 26 15
|
cpm2mf |
|
50 |
48 49
|
syl |
|
51 |
|
fcompt |
|
52 |
50 35 51
|
syl2anc |
|
53 |
1 2 3 4 8 5 6 7 11 26 27 28 29 30 31 12 16 17 24 18 15
|
cpmadumatpolylem2 |
|
54 |
53
|
anasss |
|
55 |
52 54
|
eqbrtrrd |
|
56 |
|
simpll1 |
|
57 |
19
|
3ad2ant2 |
|
58 |
57
|
ad2antrr |
|
59 |
|
eqid |
|
60 |
9 1 2 3 59
|
chpmatply1 |
|
61 |
10 60
|
eqeltrid |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
62 59 3 63
|
coe1fvalcl |
|
65 |
61 64
|
sylan |
|
66 |
65
|
adantlr |
|
67 |
2 13
|
ringidcl |
|
68 |
22 67
|
syl |
|
69 |
68
|
ad2antrr |
|
70 |
63 1 2 14
|
matvscl |
|
71 |
56 58 66 69 70
|
syl22anc |
|
72 |
71
|
ralrimiva |
|
73 |
|
nn0ex |
|
74 |
73
|
a1i |
|
75 |
1
|
matlmod |
|
76 |
19 75
|
sylan2 |
|
77 |
76
|
3adant3 |
|
78 |
77
|
adantr |
|
79 |
|
eqidd |
|
80 |
|
fvexd |
|
81 |
|
eqid |
|
82 |
1
|
matsca2 |
|
83 |
82
|
3adant3 |
|
84 |
83 57
|
eqeltrrd |
|
85 |
83
|
eqcomd |
|
86 |
85
|
fveq2d |
|
87 |
86 3
|
eqtr4di |
|
88 |
87
|
fveq2d |
|
89 |
61 88
|
eleqtrrd |
|
90 |
|
eqid |
|
91 |
|
eqid |
|
92 |
90 91 81
|
mptcoe1fsupp |
|
93 |
84 89 92
|
syl2anc |
|
94 |
93
|
adantr |
|
95 |
74 78 79 2 80 69 25 81 14 94
|
mptscmfsupp0 |
|
96 |
|
2fveq3 |
|
97 |
|
oveq1 |
|
98 |
96 97
|
oveq12d |
|
99 |
98
|
cbvmptv |
|
100 |
99
|
oveq2i |
|
101 |
100
|
a1i |
|
102 |
|
fveq2 |
|
103 |
102
|
oveq1d |
|
104 |
103 97
|
oveq12d |
|
105 |
104
|
cbvmptv |
|
106 |
105
|
oveq2i |
|
107 |
106
|
a1i |
|
108 |
16 17 18 23 2 24 25 45 55 72 95 101 107
|
gsumply1eq |
|
109 |
108
|
biimpa |
|
110 |
96 103
|
eqeq12d |
|
111 |
110
|
cbvralvw |
|
112 |
109 111
|
sylibr |
|
113 |
112
|
ex |
|