Metamath Proof Explorer


Theorem chcompl

Description: Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion chcompl H C F Cauchy F : H x H F v x

Proof

Step Hyp Ref Expression
1 isch3 H C H S f Cauchy f : H x H f v x
2 1 simprbi H C f Cauchy f : H x H f v x
3 feq1 f = F f : H F : H
4 breq1 f = F f v x F v x
5 4 rexbidv f = F x H f v x x H F v x
6 3 5 imbi12d f = F f : H x H f v x F : H x H F v x
7 6 rspccv f Cauchy f : H x H f v x F Cauchy F : H x H F v x
8 2 7 syl H C F Cauchy F : H x H F v x
9 8 3imp H C F Cauchy F : H x H F v x