Metamath Proof Explorer


Theorem chcon2i

Description: Hilbert lattice contraposition law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1 A C
chjcl.2 B C
Assertion chcon2i A = B B = A

Proof

Step Hyp Ref Expression
1 ch0le.1 A C
2 chjcl.2 B C
3 1 2 chsscon2i A B B A
4 2 1 chsscon1i B A A B
5 3 4 anbi12i A B B A B A A B
6 eqss A = B A B B A
7 eqss B = A B A A B
8 5 6 7 3bitr4i A = B B = A