Metamath Proof Explorer


Theorem chdmm1

Description: De Morgan's law for meet in a Hilbert lattice. (Contributed by NM, 21-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chdmm1 A C B C A B = A B

Proof

Step Hyp Ref Expression
1 ineq1 A = if A C A A B = if A C A B
2 1 fveq2d A = if A C A A B = if A C A B
3 fveq2 A = if A C A A = if A C A
4 3 oveq1d A = if A C A A B = if A C A B
5 2 4 eqeq12d A = if A C A A B = A B if A C A B = if A C A B
6 ineq2 B = if B C B if A C A B = if A C A if B C B
7 6 fveq2d B = if B C B if A C A B = if A C A if B C B
8 fveq2 B = if B C B B = if B C B
9 8 oveq2d B = if B C B if A C A B = if A C A if B C B
10 7 9 eqeq12d B = if B C B if A C A B = if A C A B if A C A if B C B = if A C A if B C B
11 ifchhv if A C A C
12 ifchhv if B C B C
13 11 12 chdmm1i if A C A if B C B = if A C A if B C B
14 5 10 13 dedth2h A C B C A B = A B