Metamath Proof Explorer


Theorem chebbnd1

Description: The Chebyshev bound: The function ppi ( x ) is eventually lower bounded by a positive constant times x / log ( x ) . Alternatively stated, the function ( x / log ( x ) ) / ppi ( x ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chebbnd1 x 2 +∞ x log x π _ x 𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 pnfxr +∞ *
3 icossre 2 +∞ * 2 +∞
4 1 2 3 mp2an 2 +∞
5 4 a1i 2 +∞
6 elicopnf 2 x 2 +∞ x 2 x
7 1 6 ax-mp x 2 +∞ x 2 x
8 7 simplbi x 2 +∞ x
9 0red x 2 +∞ 0
10 1re 1
11 10 a1i x 2 +∞ 1
12 0lt1 0 < 1
13 12 a1i x 2 +∞ 0 < 1
14 1 a1i x 2 +∞ 2
15 1lt2 1 < 2
16 15 a1i x 2 +∞ 1 < 2
17 7 simprbi x 2 +∞ 2 x
18 11 14 8 16 17 ltletrd x 2 +∞ 1 < x
19 9 11 8 13 18 lttrd x 2 +∞ 0 < x
20 8 19 elrpd x 2 +∞ x +
21 8 18 rplogcld x 2 +∞ log x +
22 20 21 rpdivcld x 2 +∞ x log x +
23 ppinncl x 2 x π _ x
24 7 23 sylbi x 2 +∞ π _ x
25 24 nnrpd x 2 +∞ π _ x +
26 22 25 rpdivcld x 2 +∞ x log x π _ x +
27 26 rpcnd x 2 +∞ x log x π _ x
28 27 adantl x 2 +∞ x log x π _ x
29 8re 8
30 29 a1i 8
31 2rp 2 +
32 relogcl 2 + log 2
33 31 32 ax-mp log 2
34 ere e
35 1 34 remulcli 2 e
36 2pos 0 < 2
37 epos 0 < e
38 1 34 36 37 mulgt0ii 0 < 2 e
39 35 38 gt0ne0ii 2 e 0
40 35 39 rereccli 1 2 e
41 33 40 resubcli log 2 1 2 e
42 2t1e2 2 1 = 2
43 egt2lt3 2 < e e < 3
44 43 simpli 2 < e
45 10 1 34 lttri 1 < 2 2 < e 1 < e
46 15 44 45 mp2an 1 < e
47 10 34 1 ltmul2i 0 < 2 1 < e 2 1 < 2 e
48 36 47 ax-mp 1 < e 2 1 < 2 e
49 46 48 mpbi 2 1 < 2 e
50 42 49 eqbrtrri 2 < 2 e
51 1 35 36 38 ltrecii 2 < 2 e 1 2 e < 1 2
52 50 51 mpbi 1 2 e < 1 2
53 43 simpri e < 3
54 3lt4 3 < 4
55 3re 3
56 4re 4
57 34 55 56 lttri e < 3 3 < 4 e < 4
58 53 54 57 mp2an e < 4
59 epr e +
60 4pos 0 < 4
61 56 60 elrpii 4 +
62 logltb e + 4 + e < 4 log e < log 4
63 59 61 62 mp2an e < 4 log e < log 4
64 58 63 mpbi log e < log 4
65 loge log e = 1
66 sq2 2 2 = 4
67 66 fveq2i log 2 2 = log 4
68 2z 2
69 relogexp 2 + 2 log 2 2 = 2 log 2
70 31 68 69 mp2an log 2 2 = 2 log 2
71 67 70 eqtr3i log 4 = 2 log 2
72 64 65 71 3brtr3i 1 < 2 log 2
73 1 36 pm3.2i 2 0 < 2
74 ltdivmul 1 log 2 2 0 < 2 1 2 < log 2 1 < 2 log 2
75 10 33 73 74 mp3an 1 2 < log 2 1 < 2 log 2
76 72 75 mpbir 1 2 < log 2
77 halfre 1 2
78 40 77 33 lttri 1 2 e < 1 2 1 2 < log 2 1 2 e < log 2
79 52 76 78 mp2an 1 2 e < log 2
80 40 33 posdifi 1 2 e < log 2 0 < log 2 1 2 e
81 79 80 mpbi 0 < log 2 1 2 e
82 41 81 elrpii log 2 1 2 e +
83 rerpdivcl 2 log 2 1 2 e + 2 log 2 1 2 e
84 1 82 83 mp2an 2 log 2 1 2 e
85 84 a1i 2 log 2 1 2 e
86 rpre x log x π _ x + x log x π _ x
87 rpge0 x log x π _ x + 0 x log x π _ x
88 86 87 absidd x log x π _ x + x log x π _ x = x log x π _ x
89 26 88 syl x 2 +∞ x log x π _ x = x log x π _ x
90 89 adantr x 2 +∞ 8 x x log x π _ x = x log x π _ x
91 eqid x 2 = x 2
92 91 chebbnd1lem3 x 8 x log 2 1 2 e 2 < π _ x log x x
93 8 92 sylan x 2 +∞ 8 x log 2 1 2 e 2 < π _ x log x x
94 1 recni 2
95 2ne0 2 0
96 41 recni log 2 1 2 e
97 41 81 gt0ne0ii log 2 1 2 e 0
98 recdiv 2 2 0 log 2 1 2 e log 2 1 2 e 0 1 2 log 2 1 2 e = log 2 1 2 e 2
99 94 95 96 97 98 mp4an 1 2 log 2 1 2 e = log 2 1 2 e 2
100 99 a1i x 2 +∞ 8 x 1 2 log 2 1 2 e = log 2 1 2 e 2
101 22 rpcnd x 2 +∞ x log x
102 24 nncnd x 2 +∞ π _ x
103 22 rpne0d x 2 +∞ x log x 0
104 24 nnne0d x 2 +∞ π _ x 0
105 101 102 103 104 recdivd x 2 +∞ 1 x log x π _ x = π _ x x log x
106 102 101 103 divrecd x 2 +∞ π _ x x log x = π _ x 1 x log x
107 20 rpcnne0d x 2 +∞ x x 0
108 21 rpcnne0d x 2 +∞ log x log x 0
109 recdiv x x 0 log x log x 0 1 x log x = log x x
110 107 108 109 syl2anc x 2 +∞ 1 x log x = log x x
111 110 oveq2d x 2 +∞ π _ x 1 x log x = π _ x log x x
112 105 106 111 3eqtrd x 2 +∞ 1 x log x π _ x = π _ x log x x
113 112 adantr x 2 +∞ 8 x 1 x log x π _ x = π _ x log x x
114 93 100 113 3brtr4d x 2 +∞ 8 x 1 2 log 2 1 2 e < 1 x log x π _ x
115 26 adantr x 2 +∞ 8 x x log x π _ x +
116 elrp x log x π _ x + x log x π _ x 0 < x log x π _ x
117 1 41 36 81 divgt0ii 0 < 2 log 2 1 2 e
118 ltrec x log x π _ x 0 < x log x π _ x 2 log 2 1 2 e 0 < 2 log 2 1 2 e x log x π _ x < 2 log 2 1 2 e 1 2 log 2 1 2 e < 1 x log x π _ x
119 84 117 118 mpanr12 x log x π _ x 0 < x log x π _ x x log x π _ x < 2 log 2 1 2 e 1 2 log 2 1 2 e < 1 x log x π _ x
120 116 119 sylbi x log x π _ x + x log x π _ x < 2 log 2 1 2 e 1 2 log 2 1 2 e < 1 x log x π _ x
121 115 120 syl x 2 +∞ 8 x x log x π _ x < 2 log 2 1 2 e 1 2 log 2 1 2 e < 1 x log x π _ x
122 114 121 mpbird x 2 +∞ 8 x x log x π _ x < 2 log 2 1 2 e
123 115 rpred x 2 +∞ 8 x x log x π _ x
124 ltle x log x π _ x 2 log 2 1 2 e x log x π _ x < 2 log 2 1 2 e x log x π _ x 2 log 2 1 2 e
125 123 84 124 sylancl x 2 +∞ 8 x x log x π _ x < 2 log 2 1 2 e x log x π _ x 2 log 2 1 2 e
126 122 125 mpd x 2 +∞ 8 x x log x π _ x 2 log 2 1 2 e
127 90 126 eqbrtrd x 2 +∞ 8 x x log x π _ x 2 log 2 1 2 e
128 127 adantl x 2 +∞ 8 x x log x π _ x 2 log 2 1 2 e
129 5 28 30 85 128 elo1d x 2 +∞ x log x π _ x 𝑂1
130 129 mptru x 2 +∞ x log x π _ x 𝑂1