Metamath Proof Explorer


Theorem chfacfisfcpmat

Description: The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chfacfisfcpmat.s S = N ConstPolyMat R
Assertion chfacfisfcpmat N Fin R Ring M B s b B 0 s G : 0 S

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 chfacfisfcpmat.s S = N ConstPolyMat R
11 10 3 4 cpmatsubgpmat N Fin R Ring S SubGrp Y
12 11 3adant3 N Fin R Ring M B S SubGrp Y
13 12 adantr N Fin R Ring M B s b B 0 s S SubGrp Y
14 subgsubm S SubGrp Y S SubMnd Y
15 7 subm0cl S SubMnd Y 0 ˙ S
16 12 14 15 3syl N Fin R Ring M B 0 ˙ S
17 16 adantr N Fin R Ring M B s b B 0 s 0 ˙ S
18 10 3 4 cpmatsrgpmat N Fin R Ring S SubRing Y
19 18 3adant3 N Fin R Ring M B S SubRing Y
20 19 adantr N Fin R Ring M B s b B 0 s S SubRing Y
21 10 8 1 2 m2cpm N Fin R Ring M B T M S
22 21 adantr N Fin R Ring M B s b B 0 s T M S
23 3simpa N Fin R Ring M B N Fin R Ring
24 elmapi b B 0 s b : 0 s B
25 24 adantl s b B 0 s b : 0 s B
26 nnnn0 s s 0
27 nn0uz 0 = 0
28 26 27 eleqtrdi s s 0
29 eluzfz1 s 0 0 0 s
30 28 29 syl s 0 0 s
31 30 adantr s b B 0 s 0 0 s
32 25 31 ffvelrnd s b B 0 s b 0 B
33 23 32 anim12i N Fin R Ring M B s b B 0 s N Fin R Ring b 0 B
34 df-3an N Fin R Ring b 0 B N Fin R Ring b 0 B
35 33 34 sylibr N Fin R Ring M B s b B 0 s N Fin R Ring b 0 B
36 10 8 1 2 m2cpm N Fin R Ring b 0 B T b 0 S
37 35 36 syl N Fin R Ring M B s b B 0 s T b 0 S
38 5 subrgmcl S SubRing Y T M S T b 0 S T M × ˙ T b 0 S
39 20 22 37 38 syl3anc N Fin R Ring M B s b B 0 s T M × ˙ T b 0 S
40 6 subgsubcl S SubGrp Y 0 ˙ S T M × ˙ T b 0 S 0 ˙ - ˙ T M × ˙ T b 0 S
41 13 17 39 40 syl3anc N Fin R Ring M B s b B 0 s 0 ˙ - ˙ T M × ˙ T b 0 S
42 41 ad2antrr N Fin R Ring M B s b B 0 s n 0 n = 0 0 ˙ - ˙ T M × ˙ T b 0 S
43 simpl1 N Fin R Ring M B s b B 0 s N Fin
44 simpl2 N Fin R Ring M B s b B 0 s R Ring
45 25 adantl N Fin R Ring M B s b B 0 s b : 0 s B
46 eluzfz2 s 0 s 0 s
47 28 46 syl s s 0 s
48 47 ad2antrl N Fin R Ring M B s b B 0 s s 0 s
49 45 48 ffvelrnd N Fin R Ring M B s b B 0 s b s B
50 10 8 1 2 m2cpm N Fin R Ring b s B T b s S
51 43 44 49 50 syl3anc N Fin R Ring M B s b B 0 s T b s S
52 51 adantr N Fin R Ring M B s b B 0 s n 0 T b s S
53 52 ad2antrr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n = s + 1 T b s S
54 17 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 s + 1 < n 0 ˙ S
55 nn0re n 0 n
56 55 adantl s n 0 n
57 peano2nn s s + 1
58 57 nnred s s + 1
59 58 adantr s n 0 s + 1
60 56 59 lenltd s n 0 n s + 1 ¬ s + 1 < n
61 nesym s + 1 n ¬ n = s + 1
62 ltlen n s + 1 n < s + 1 n s + 1 s + 1 n
63 55 58 62 syl2anr s n 0 n < s + 1 n s + 1 s + 1 n
64 63 biimprd s n 0 n s + 1 s + 1 n n < s + 1
65 64 expcomd s n 0 s + 1 n n s + 1 n < s + 1
66 61 65 syl5bir s n 0 ¬ n = s + 1 n s + 1 n < s + 1
67 66 com23 s n 0 n s + 1 ¬ n = s + 1 n < s + 1
68 60 67 sylbird s n 0 ¬ s + 1 < n ¬ n = s + 1 n < s + 1
69 68 impcomd s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
70 69 ex s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
71 70 ad2antrl N Fin R Ring M B s b B 0 s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
72 71 imp N Fin R Ring M B s b B 0 s n 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
73 72 adantr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n n < s + 1
74 12 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 S SubGrp Y
75 23 ad4antr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 N Fin R Ring
76 25 ad4antlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 b : 0 s B
77 neqne ¬ n = 0 n 0
78 77 anim2i n 0 ¬ n = 0 n 0 n 0
79 elnnne0 n n 0 n 0
80 78 79 sylibr n 0 ¬ n = 0 n
81 nnm1nn0 n n 1 0
82 80 81 syl n 0 ¬ n = 0 n 1 0
83 82 ad4ant23 N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 0
84 26 adantr s b B 0 s s 0
85 84 ad4antlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 s 0
86 63 simprbda s n 0 n < s + 1 n s + 1
87 56 adantr s n 0 n < s + 1 n
88 1red s n 0 n < s + 1 1
89 nnre s s
90 89 ad2antrr s n 0 n < s + 1 s
91 87 88 90 lesubaddd s n 0 n < s + 1 n 1 s n s + 1
92 86 91 mpbird s n 0 n < s + 1 n 1 s
93 92 exp31 s n 0 n < s + 1 n 1 s
94 93 ad2antrl N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 1 s
95 94 imp N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 1 s
96 95 adantr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 s
97 96 imp N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 s
98 elfz2nn0 n 1 0 s n 1 0 s 0 n 1 s
99 83 85 97 98 syl3anbrc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 n 1 0 s
100 76 99 ffvelrnd N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 b n 1 B
101 df-3an N Fin R Ring b n 1 B N Fin R Ring b n 1 B
102 75 100 101 sylanbrc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 N Fin R Ring b n 1 B
103 10 8 1 2 m2cpm N Fin R Ring b n 1 B T b n 1 S
104 102 103 syl N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 S
105 20 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 S SubRing Y
106 22 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 T M S
107 23 84 anim12i N Fin R Ring M B s b B 0 s N Fin R Ring s 0
108 df-3an N Fin R Ring s 0 N Fin R Ring s 0
109 107 108 sylibr N Fin R Ring M B s b B 0 s N Fin R Ring s 0
110 109 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 N Fin R Ring s 0
111 110 simp1d N Fin R Ring M B s b B 0 s n 0 n < s + 1 N Fin
112 110 simp2d N Fin R Ring M B s b B 0 s n 0 n < s + 1 R Ring
113 45 ad2antrr N Fin R Ring M B s b B 0 s n 0 n < s + 1 b : 0 s B
114 simplr s n 0 n < s + 1 n 0
115 26 ad2antrr s n 0 n < s + 1 s 0
116 nn0z n 0 n
117 nnz s s
118 zleltp1 n s n s n < s + 1
119 116 117 118 syl2anr s n 0 n s n < s + 1
120 119 biimpar s n 0 n < s + 1 n s
121 elfz2nn0 n 0 s n 0 s 0 n s
122 114 115 120 121 syl3anbrc s n 0 n < s + 1 n 0 s
123 122 exp31 s n 0 n < s + 1 n 0 s
124 123 ad2antrl N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 0 s
125 124 imp31 N Fin R Ring M B s b B 0 s n 0 n < s + 1 n 0 s
126 113 125 ffvelrnd N Fin R Ring M B s b B 0 s n 0 n < s + 1 b n B
127 10 8 1 2 m2cpm N Fin R Ring b n B T b n S
128 111 112 126 127 syl3anc N Fin R Ring M B s b B 0 s n 0 n < s + 1 T b n S
129 5 subrgmcl S SubRing Y T M S T b n S T M × ˙ T b n S
130 105 106 128 129 syl3anc N Fin R Ring M B s b B 0 s n 0 n < s + 1 T M × ˙ T b n S
131 130 adantlr N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T M × ˙ T b n S
132 6 subgsubcl S SubGrp Y T b n 1 S T M × ˙ T b n S T b n 1 - ˙ T M × ˙ T b n S
133 74 104 131 132 syl3anc N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 - ˙ T M × ˙ T b n S
134 133 ex N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 n < s + 1 T b n 1 - ˙ T M × ˙ T b n S
135 73 134 syld N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 - ˙ T M × ˙ T b n S
136 135 impl N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 - ˙ T M × ˙ T b n S
137 54 136 ifclda N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 ¬ n = s + 1 if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n S
138 53 137 ifclda N Fin R Ring M B s b B 0 s n 0 ¬ n = 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n S
139 42 138 ifclda N Fin R Ring M B s b B 0 s n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n S
140 139 9 fmptd N Fin R Ring M B s b B 0 s G : 0 S