Metamath Proof Explorer


Theorem chfacfpmmul0

Description: The value of the "characteristic factor function" multiplied with a constant polynomial matrix is zero almost always. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
Assertion chfacfpmmul0 N Fin R CRing M B s b B 0 s K s + 2 K × ˙ T M × ˙ G K = 0 ˙

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 eluz2 K s + 2 s + 2 K s + 2 K
12 simpll K s s + 2 K K
13 nngt0 s 0 < s
14 nnre s s
15 14 adantl K s s
16 2rp 2 +
17 16 a1i K s 2 +
18 15 17 ltaddrpd K s s < s + 2
19 0red K s 0
20 2re 2
21 20 a1i K s 2
22 15 21 readdcld K s s + 2
23 lttr 0 s s + 2 0 < s s < s + 2 0 < s + 2
24 19 15 22 23 syl3anc K s 0 < s s < s + 2 0 < s + 2
25 18 24 mpan2d K s 0 < s 0 < s + 2
26 25 ex K s 0 < s 0 < s + 2
27 26 com13 0 < s s K 0 < s + 2
28 13 27 mpcom s K 0 < s + 2
29 28 impcom K s 0 < s + 2
30 zre K K
31 30 adantr K s K
32 ltleletr 0 s + 2 K 0 < s + 2 s + 2 K 0 K
33 19 22 31 32 syl3anc K s 0 < s + 2 s + 2 K 0 K
34 29 33 mpand K s s + 2 K 0 K
35 34 imp K s s + 2 K 0 K
36 elnn0z K 0 K 0 K
37 12 35 36 sylanbrc K s s + 2 K K 0
38 nncn s s
39 add1p1 s s + 1 + 1 = s + 2
40 38 39 syl s s + 1 + 1 = s + 2
41 40 adantl K s s + 1 + 1 = s + 2
42 41 eqcomd K s s + 2 = s + 1 + 1
43 42 breq1d K s s + 2 K s + 1 + 1 K
44 nnz s s
45 44 peano2zd s s + 1
46 45 anim2i K s K s + 1
47 46 ancomd K s s + 1 K
48 zltp1le s + 1 K s + 1 < K s + 1 + 1 K
49 48 bicomd s + 1 K s + 1 + 1 K s + 1 < K
50 47 49 syl K s s + 1 + 1 K s + 1 < K
51 43 50 bitrd K s s + 2 K s + 1 < K
52 51 biimpa K s s + 2 K s + 1 < K
53 37 52 jca K s s + 2 K K 0 s + 1 < K
54 53 ex K s s + 2 K K 0 s + 1 < K
55 54 impancom K s + 2 K s K 0 s + 1 < K
56 55 3adant1 s + 2 K s + 2 K s K 0 s + 1 < K
57 56 com12 s s + 2 K s + 2 K K 0 s + 1 < K
58 11 57 syl5bi s K s + 2 K 0 s + 1 < K
59 58 adantr s b B 0 s K s + 2 K 0 s + 1 < K
60 59 adantl N Fin R CRing M B s b B 0 s K s + 2 K 0 s + 1 < K
61 0red N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0
62 peano2re s s + 1
63 14 62 syl s s + 1
64 63 adantr s b B 0 s s + 1
65 64 adantl N Fin R CRing M B s b B 0 s s + 1
66 65 ad2antrr N Fin R CRing M B s b B 0 s K 0 s + 1 < K s + 1
67 nn0re K 0 K
68 67 ad2antlr N Fin R CRing M B s b B 0 s K 0 s + 1 < K K
69 nnnn0 s s 0
70 69 adantr s b B 0 s s 0
71 70 ad2antlr N Fin R CRing M B s b B 0 s K 0 s 0
72 nn0p1gt0 s 0 0 < s + 1
73 71 72 syl N Fin R CRing M B s b B 0 s K 0 0 < s + 1
74 73 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 < s + 1
75 simpr N Fin R CRing M B s b B 0 s K 0 s + 1 < K s + 1 < K
76 61 66 68 74 75 lttrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 < K
77 76 gt0ne0d N Fin R CRing M B s b B 0 s K 0 s + 1 < K K 0
78 77 neneqd N Fin R CRing M B s b B 0 s K 0 s + 1 < K ¬ K = 0
79 78 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ K = 0
80 eqeq1 n = K n = 0 K = 0
81 80 notbid n = K ¬ n = 0 ¬ K = 0
82 81 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = 0 ¬ K = 0
83 79 82 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = 0
84 83 iffalsed N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
85 64 ad2antlr N Fin R CRing M B s b B 0 s K 0 s + 1
86 ltne s + 1 s + 1 < K K s + 1
87 85 86 sylan N Fin R CRing M B s b B 0 s K 0 s + 1 < K K s + 1
88 87 neneqd N Fin R CRing M B s b B 0 s K 0 s + 1 < K ¬ K = s + 1
89 88 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ K = s + 1
90 eqeq1 n = K n = s + 1 K = s + 1
91 90 notbid n = K ¬ n = s + 1 ¬ K = s + 1
92 91 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = s + 1 ¬ K = s + 1
93 89 92 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K ¬ n = s + 1
94 93 iffalsed N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
95 simplr N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < K
96 breq2 n = K s + 1 < n s + 1 < K
97 96 adantl N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < n s + 1 < K
98 95 97 mpbird N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K s + 1 < n
99 98 iftrued N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙
100 84 94 99 3eqtrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K n = K if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙
101 simplr N Fin R CRing M B s b B 0 s K 0 s + 1 < K K 0
102 7 fvexi 0 ˙ V
103 102 a1i N Fin R CRing M B s b B 0 s K 0 s + 1 < K 0 ˙ V
104 9 100 101 103 fvmptd2 N Fin R CRing M B s b B 0 s K 0 s + 1 < K G K = 0 ˙
105 104 oveq2d N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ T M × ˙ G K = K × ˙ T M × ˙ 0 ˙
106 crngring R CRing R Ring
107 3 4 pmatring N Fin R Ring Y Ring
108 106 107 sylan2 N Fin R CRing Y Ring
109 108 3adant3 N Fin R CRing M B Y Ring
110 109 adantr N Fin R CRing M B s b B 0 s Y Ring
111 110 ad2antrr N Fin R CRing M B s b B 0 s K 0 s + 1 < K Y Ring
112 eqid mulGrp Y = mulGrp Y
113 112 ringmgp Y Ring mulGrp Y Mnd
114 109 113 syl N Fin R CRing M B mulGrp Y Mnd
115 114 ad2antrr N Fin R CRing M B s b B 0 s K 0 mulGrp Y Mnd
116 simpr N Fin R CRing M B s b B 0 s K 0 K 0
117 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
118 106 117 syl3an2 N Fin R CRing M B T M Base Y
119 118 ad2antrr N Fin R CRing M B s b B 0 s K 0 T M Base Y
120 eqid Base Y = Base Y
121 112 120 mgpbas Base Y = Base mulGrp Y
122 121 10 mulgnn0cl mulGrp Y Mnd K 0 T M Base Y K × ˙ T M Base Y
123 115 116 119 122 syl3anc N Fin R CRing M B s b B 0 s K 0 K × ˙ T M Base Y
124 123 adantr N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ T M Base Y
125 120 5 7 ringrz Y Ring K × ˙ T M Base Y K × ˙ T M × ˙ 0 ˙ = 0 ˙
126 111 124 125 syl2anc N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ T M × ˙ 0 ˙ = 0 ˙
127 105 126 eqtrd N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ T M × ˙ G K = 0 ˙
128 127 expl N Fin R CRing M B s b B 0 s K 0 s + 1 < K K × ˙ T M × ˙ G K = 0 ˙
129 60 128 syld N Fin R CRing M B s b B 0 s K s + 2 K × ˙ T M × ˙ G K = 0 ˙
130 129 3impia N Fin R CRing M B s b B 0 s K s + 2 K × ˙ T M × ˙ G K = 0 ˙