Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
|
2 |
|
cayhamlem1.b |
|
3 |
|
cayhamlem1.p |
|
4 |
|
cayhamlem1.y |
|
5 |
|
cayhamlem1.r |
|
6 |
|
cayhamlem1.s |
|
7 |
|
cayhamlem1.0 |
|
8 |
|
cayhamlem1.t |
|
9 |
|
cayhamlem1.g |
|
10 |
|
cayhamlem1.e |
|
11 |
|
eluz2 |
|
12 |
|
simpll |
|
13 |
|
nngt0 |
|
14 |
|
nnre |
|
15 |
14
|
adantl |
|
16 |
|
2rp |
|
17 |
16
|
a1i |
|
18 |
15 17
|
ltaddrpd |
|
19 |
|
0red |
|
20 |
|
2re |
|
21 |
20
|
a1i |
|
22 |
15 21
|
readdcld |
|
23 |
|
lttr |
|
24 |
19 15 22 23
|
syl3anc |
|
25 |
18 24
|
mpan2d |
|
26 |
25
|
ex |
|
27 |
26
|
com13 |
|
28 |
13 27
|
mpcom |
|
29 |
28
|
impcom |
|
30 |
|
zre |
|
31 |
30
|
adantr |
|
32 |
|
ltleletr |
|
33 |
19 22 31 32
|
syl3anc |
|
34 |
29 33
|
mpand |
|
35 |
34
|
imp |
|
36 |
|
elnn0z |
|
37 |
12 35 36
|
sylanbrc |
|
38 |
|
nncn |
|
39 |
|
add1p1 |
|
40 |
38 39
|
syl |
|
41 |
40
|
adantl |
|
42 |
41
|
eqcomd |
|
43 |
42
|
breq1d |
|
44 |
|
nnz |
|
45 |
44
|
peano2zd |
|
46 |
45
|
anim2i |
|
47 |
46
|
ancomd |
|
48 |
|
zltp1le |
|
49 |
48
|
bicomd |
|
50 |
47 49
|
syl |
|
51 |
43 50
|
bitrd |
|
52 |
51
|
biimpa |
|
53 |
37 52
|
jca |
|
54 |
53
|
ex |
|
55 |
54
|
impancom |
|
56 |
55
|
3adant1 |
|
57 |
56
|
com12 |
|
58 |
11 57
|
syl5bi |
|
59 |
58
|
adantr |
|
60 |
59
|
adantl |
|
61 |
|
0red |
|
62 |
|
peano2re |
|
63 |
14 62
|
syl |
|
64 |
63
|
adantr |
|
65 |
64
|
adantl |
|
66 |
65
|
ad2antrr |
|
67 |
|
nn0re |
|
68 |
67
|
ad2antlr |
|
69 |
|
nnnn0 |
|
70 |
69
|
adantr |
|
71 |
70
|
ad2antlr |
|
72 |
|
nn0p1gt0 |
|
73 |
71 72
|
syl |
|
74 |
73
|
adantr |
|
75 |
|
simpr |
|
76 |
61 66 68 74 75
|
lttrd |
|
77 |
76
|
gt0ne0d |
|
78 |
77
|
neneqd |
|
79 |
78
|
adantr |
|
80 |
|
eqeq1 |
|
81 |
80
|
notbid |
|
82 |
81
|
adantl |
|
83 |
79 82
|
mpbird |
|
84 |
83
|
iffalsed |
|
85 |
64
|
ad2antlr |
|
86 |
|
ltne |
|
87 |
85 86
|
sylan |
|
88 |
87
|
neneqd |
|
89 |
88
|
adantr |
|
90 |
|
eqeq1 |
|
91 |
90
|
notbid |
|
92 |
91
|
adantl |
|
93 |
89 92
|
mpbird |
|
94 |
93
|
iffalsed |
|
95 |
|
simplr |
|
96 |
|
breq2 |
|
97 |
96
|
adantl |
|
98 |
95 97
|
mpbird |
|
99 |
98
|
iftrued |
|
100 |
84 94 99
|
3eqtrd |
|
101 |
|
simplr |
|
102 |
7
|
fvexi |
|
103 |
102
|
a1i |
|
104 |
9 100 101 103
|
fvmptd2 |
|
105 |
104
|
oveq2d |
|
106 |
|
crngring |
|
107 |
3 4
|
pmatring |
|
108 |
106 107
|
sylan2 |
|
109 |
108
|
3adant3 |
|
110 |
109
|
adantr |
|
111 |
110
|
ad2antrr |
|
112 |
|
eqid |
|
113 |
112
|
ringmgp |
|
114 |
109 113
|
syl |
|
115 |
114
|
ad2antrr |
|
116 |
|
simpr |
|
117 |
8 1 2 3 4
|
mat2pmatbas |
|
118 |
106 117
|
syl3an2 |
|
119 |
118
|
ad2antrr |
|
120 |
|
eqid |
|
121 |
112 120
|
mgpbas |
|
122 |
121 10
|
mulgnn0cl |
|
123 |
115 116 119 122
|
syl3anc |
|
124 |
123
|
adantr |
|
125 |
120 5 7
|
ringrz |
|
126 |
111 124 125
|
syl2anc |
|
127 |
105 126
|
eqtrd |
|
128 |
127
|
expl |
|
129 |
60 128
|
syld |
|
130 |
129
|
3impia |
|