Metamath Proof Explorer


Theorem chfacfpmmulcl

Description: Closure of the value of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
Assertion chfacfpmmulcl N Fin R CRing M B s b B 0 s K 0 K × ˙ T M × ˙ G K Base Y

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 crngring R CRing R Ring
12 3 4 pmatring N Fin R Ring Y Ring
13 11 12 sylan2 N Fin R CRing Y Ring
14 13 3adant3 N Fin R CRing M B Y Ring
15 14 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 Y Ring
16 eqid mulGrp Y = mulGrp Y
17 eqid Base Y = Base Y
18 16 17 mgpbas Base Y = Base mulGrp Y
19 16 ringmgp Y Ring mulGrp Y Mnd
20 14 19 syl N Fin R CRing M B mulGrp Y Mnd
21 20 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 mulGrp Y Mnd
22 simp3 N Fin R CRing M B s b B 0 s K 0 K 0
23 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
24 11 23 syl3an2 N Fin R CRing M B T M Base Y
25 24 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 T M Base Y
26 18 10 21 22 25 mulgnn0cld N Fin R CRing M B s b B 0 s K 0 K × ˙ T M Base Y
27 1 2 3 4 5 6 7 8 9 chfacfisf N Fin R Ring M B s b B 0 s G : 0 Base Y
28 11 27 syl3anl2 N Fin R CRing M B s b B 0 s G : 0 Base Y
29 28 3adant3 N Fin R CRing M B s b B 0 s K 0 G : 0 Base Y
30 29 22 ffvelcdmd N Fin R CRing M B s b B 0 s K 0 G K Base Y
31 17 5 ringcl Y Ring K × ˙ T M Base Y G K Base Y K × ˙ T M × ˙ G K Base Y
32 15 26 30 31 syl3anc N Fin R CRing M B s b B 0 s K 0 K × ˙ T M × ˙ G K Base Y