Metamath Proof Explorer


Theorem chfacfpmmulfsupp

Description: A mapping of values of the "characteristic factor function" multiplied with a constant polynomial matrix is finitely supported. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
Assertion chfacfpmmulfsupp N Fin R CRing M B s b B 0 s finSupp 0 ˙ i 0 i × ˙ T M × ˙ G i

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 7 fvexi 0 ˙ V
12 11 a1i N Fin R CRing M B s b B 0 s 0 ˙ V
13 ovexd N Fin R CRing M B s b B 0 s i 0 i × ˙ T M × ˙ G i V
14 nnnn0 s s 0
15 14 ad2antrl N Fin R CRing M B s b B 0 s s 0
16 1nn0 1 0
17 16 a1i N Fin R CRing M B s b B 0 s 1 0
18 15 17 nn0addcld N Fin R CRing M B s b B 0 s s + 1 0
19 vex k V
20 csbov12g k V k / i i × ˙ T M × ˙ G i = k / i i × ˙ T M × ˙ k / i G i
21 nfcvd k V _ i k × ˙ T M
22 oveq1 i = k i × ˙ T M = k × ˙ T M
23 21 22 csbiegf k V k / i i × ˙ T M = k × ˙ T M
24 csbfv k / i G i = G k
25 24 a1i k V k / i G i = G k
26 23 25 oveq12d k V k / i i × ˙ T M × ˙ k / i G i = k × ˙ T M × ˙ G k
27 20 26 eqtrd k V k / i i × ˙ T M × ˙ G i = k × ˙ T M × ˙ G k
28 19 27 mp1i N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ T M × ˙ G i = k × ˙ T M × ˙ G k
29 simplll N Fin R CRing M B s b B 0 s k 0 s + 1 < k N Fin R CRing M B
30 simpllr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s b B 0 s
31 14 adantr s b B 0 s s 0
32 31 ad2antlr N Fin R CRing M B s b B 0 s k 0 s 0
33 32 nn0zd N Fin R CRing M B s b B 0 s k 0 s
34 33 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s
35 2z 2
36 35 a1i N Fin R CRing M B s b B 0 s k 0 s + 1 < k 2
37 34 36 zaddcld N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2
38 simplr N Fin R CRing M B s b B 0 s k 0 s + 1 < k k 0
39 38 nn0zd N Fin R CRing M B s b B 0 s k 0 s + 1 < k k
40 peano2nn0 s 0 s + 1 0
41 14 40 syl s s + 1 0
42 41 ad2antrl N Fin R CRing M B s b B 0 s s + 1 0
43 42 nn0zd N Fin R CRing M B s b B 0 s s + 1
44 nn0z k 0 k
45 zltp1le s + 1 k s + 1 < k s + 1 + 1 k
46 43 44 45 syl2an N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1 + 1 k
47 46 biimpa N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 1 + 1 k
48 nncn s s
49 add1p1 s s + 1 + 1 = s + 2
50 48 49 syl s s + 1 + 1 = s + 2
51 50 breq1d s s + 1 + 1 k s + 2 k
52 51 bicomd s s + 2 k s + 1 + 1 k
53 52 adantr s b B 0 s s + 2 k s + 1 + 1 k
54 53 ad2antlr N Fin R CRing M B s b B 0 s k 0 s + 2 k s + 1 + 1 k
55 54 adantr N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2 k s + 1 + 1 k
56 47 55 mpbird N Fin R CRing M B s b B 0 s k 0 s + 1 < k s + 2 k
57 eluz2 k s + 2 s + 2 k s + 2 k
58 37 39 56 57 syl3anbrc N Fin R CRing M B s b B 0 s k 0 s + 1 < k k s + 2
59 1 2 3 4 5 6 7 8 9 10 chfacfpmmul0 N Fin R CRing M B s b B 0 s k s + 2 k × ˙ T M × ˙ G k = 0 ˙
60 29 30 58 59 syl3anc N Fin R CRing M B s b B 0 s k 0 s + 1 < k k × ˙ T M × ˙ G k = 0 ˙
61 28 60 eqtrd N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ T M × ˙ G i = 0 ˙
62 61 ex N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ T M × ˙ G i = 0 ˙
63 62 ralrimiva N Fin R CRing M B s b B 0 s k 0 s + 1 < k k / i i × ˙ T M × ˙ G i = 0 ˙
64 breq1 x = s + 1 x < k s + 1 < k
65 64 rspceaimv s + 1 0 k 0 s + 1 < k k / i i × ˙ T M × ˙ G i = 0 ˙ x 0 k 0 x < k k / i i × ˙ T M × ˙ G i = 0 ˙
66 18 63 65 syl2anc N Fin R CRing M B s b B 0 s x 0 k 0 x < k k / i i × ˙ T M × ˙ G i = 0 ˙
67 12 13 66 mptnn0fsupp N Fin R CRing M B s b B 0 s finSupp 0 ˙ i 0 i × ˙ T M × ˙ G i