Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
|
2 |
|
cayhamlem1.b |
|
3 |
|
cayhamlem1.p |
|
4 |
|
cayhamlem1.y |
|
5 |
|
cayhamlem1.r |
|
6 |
|
cayhamlem1.s |
|
7 |
|
cayhamlem1.0 |
|
8 |
|
cayhamlem1.t |
|
9 |
|
cayhamlem1.g |
|
10 |
|
cayhamlem1.e |
|
11 |
7
|
fvexi |
|
12 |
11
|
a1i |
|
13 |
|
ovexd |
|
14 |
|
nnnn0 |
|
15 |
14
|
ad2antrl |
|
16 |
|
1nn0 |
|
17 |
16
|
a1i |
|
18 |
15 17
|
nn0addcld |
|
19 |
|
vex |
|
20 |
|
csbov12g |
|
21 |
|
nfcvd |
|
22 |
|
oveq1 |
|
23 |
21 22
|
csbiegf |
|
24 |
|
csbfv |
|
25 |
24
|
a1i |
|
26 |
23 25
|
oveq12d |
|
27 |
20 26
|
eqtrd |
|
28 |
19 27
|
mp1i |
|
29 |
|
simplll |
|
30 |
|
simpllr |
|
31 |
14
|
adantr |
|
32 |
31
|
ad2antlr |
|
33 |
32
|
nn0zd |
|
34 |
33
|
adantr |
|
35 |
|
2z |
|
36 |
35
|
a1i |
|
37 |
34 36
|
zaddcld |
|
38 |
|
simplr |
|
39 |
38
|
nn0zd |
|
40 |
|
peano2nn0 |
|
41 |
14 40
|
syl |
|
42 |
41
|
ad2antrl |
|
43 |
42
|
nn0zd |
|
44 |
|
nn0z |
|
45 |
|
zltp1le |
|
46 |
43 44 45
|
syl2an |
|
47 |
46
|
biimpa |
|
48 |
|
nncn |
|
49 |
|
add1p1 |
|
50 |
48 49
|
syl |
|
51 |
50
|
breq1d |
|
52 |
51
|
bicomd |
|
53 |
52
|
adantr |
|
54 |
53
|
ad2antlr |
|
55 |
54
|
adantr |
|
56 |
47 55
|
mpbird |
|
57 |
|
eluz2 |
|
58 |
37 39 56 57
|
syl3anbrc |
|
59 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmul0 |
|
60 |
29 30 58 59
|
syl3anc |
|
61 |
28 60
|
eqtrd |
|
62 |
61
|
ex |
|
63 |
62
|
ralrimiva |
|
64 |
|
breq1 |
|
65 |
64
|
rspceaimv |
|
66 |
18 63 65
|
syl2anc |
|
67 |
12 13 66
|
mptnn0fsupp |
|