Metamath Proof Explorer


Theorem chfacfpmmulgsum

Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
chfacfpmmulgsum.p + ˙ = + Y
Assertion chfacfpmmulgsum N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 chfacfpmmulgsum.p + ˙ = + Y
12 eqid Base Y = Base Y
13 crngring R CRing R Ring
14 13 anim2i N Fin R CRing N Fin R Ring
15 14 3adant3 N Fin R CRing M B N Fin R Ring
16 3 4 pmatring N Fin R Ring Y Ring
17 15 16 syl N Fin R CRing M B Y Ring
18 ringcmn Y Ring Y CMnd
19 17 18 syl N Fin R CRing M B Y CMnd
20 19 adantr N Fin R CRing M B s b B 0 s Y CMnd
21 nn0ex 0 V
22 21 a1i N Fin R CRing M B s b B 0 s 0 V
23 simpll N Fin R CRing M B s b B 0 s i 0 N Fin R CRing M B
24 simplr N Fin R CRing M B s b B 0 s i 0 s b B 0 s
25 simpr N Fin R CRing M B s b B 0 s i 0 i 0
26 23 24 25 3jca N Fin R CRing M B s b B 0 s i 0 N Fin R CRing M B s b B 0 s i 0
27 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl N Fin R CRing M B s b B 0 s i 0 i × ˙ T M × ˙ G i Base Y
28 26 27 syl N Fin R CRing M B s b B 0 s i 0 i × ˙ T M × ˙ G i Base Y
29 1 2 3 4 5 6 7 8 9 10 chfacfpmmulfsupp N Fin R CRing M B s b B 0 s finSupp 0 ˙ i 0 i × ˙ T M × ˙ G i
30 nn0disj 0 s + 1 s + 1 + 1 =
31 30 a1i N Fin R CRing M B s b B 0 s 0 s + 1 s + 1 + 1 =
32 nnnn0 s s 0
33 peano2nn0 s 0 s + 1 0
34 32 33 syl s s + 1 0
35 nn0split s + 1 0 0 = 0 s + 1 s + 1 + 1
36 34 35 syl s 0 = 0 s + 1 s + 1 + 1
37 36 ad2antrl N Fin R CRing M B s b B 0 s 0 = 0 s + 1 s + 1 + 1
38 12 7 11 20 22 28 29 31 37 gsumsplit2 N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ Y i s + 1 + 1 i × ˙ T M × ˙ G i
39 simpll N Fin R CRing M B s b B 0 s i s + 1 + 1 N Fin R CRing M B
40 simplr N Fin R CRing M B s b B 0 s i s + 1 + 1 s b B 0 s
41 nncn s s
42 add1p1 s s + 1 + 1 = s + 2
43 41 42 syl s s + 1 + 1 = s + 2
44 43 ad2antrl N Fin R CRing M B s b B 0 s s + 1 + 1 = s + 2
45 44 fveq2d N Fin R CRing M B s b B 0 s s + 1 + 1 = s + 2
46 45 eleq2d N Fin R CRing M B s b B 0 s i s + 1 + 1 i s + 2
47 46 biimpa N Fin R CRing M B s b B 0 s i s + 1 + 1 i s + 2
48 1 2 3 4 5 6 7 8 9 10 chfacfpmmul0 N Fin R CRing M B s b B 0 s i s + 2 i × ˙ T M × ˙ G i = 0 ˙
49 39 40 47 48 syl3anc N Fin R CRing M B s b B 0 s i s + 1 + 1 i × ˙ T M × ˙ G i = 0 ˙
50 49 mpteq2dva N Fin R CRing M B s b B 0 s i s + 1 + 1 i × ˙ T M × ˙ G i = i s + 1 + 1 0 ˙
51 50 oveq2d N Fin R CRing M B s b B 0 s Y i s + 1 + 1 i × ˙ T M × ˙ G i = Y i s + 1 + 1 0 ˙
52 13 16 sylan2 N Fin R CRing Y Ring
53 ringmnd Y Ring Y Mnd
54 52 53 syl N Fin R CRing Y Mnd
55 54 3adant3 N Fin R CRing M B Y Mnd
56 fvex s + 1 + 1 V
57 55 56 jctir N Fin R CRing M B Y Mnd s + 1 + 1 V
58 57 adantr N Fin R CRing M B s b B 0 s Y Mnd s + 1 + 1 V
59 7 gsumz Y Mnd s + 1 + 1 V Y i s + 1 + 1 0 ˙ = 0 ˙
60 58 59 syl N Fin R CRing M B s b B 0 s Y i s + 1 + 1 0 ˙ = 0 ˙
61 51 60 eqtrd N Fin R CRing M B s b B 0 s Y i s + 1 + 1 i × ˙ T M × ˙ G i = 0 ˙
62 61 oveq2d N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ Y i s + 1 + 1 i × ˙ T M × ˙ G i = Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ 0 ˙
63 fzfid N Fin R CRing M B s b B 0 s 0 s + 1 Fin
64 elfznn0 i 0 s + 1 i 0
65 64 26 sylan2 N Fin R CRing M B s b B 0 s i 0 s + 1 N Fin R CRing M B s b B 0 s i 0
66 65 27 syl N Fin R CRing M B s b B 0 s i 0 s + 1 i × ˙ T M × ˙ G i Base Y
67 66 ralrimiva N Fin R CRing M B s b B 0 s i 0 s + 1 i × ˙ T M × ˙ G i Base Y
68 12 20 63 67 gsummptcl N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i Base Y
69 12 11 7 mndrid Y Mnd Y i = 0 s + 1 i × ˙ T M × ˙ G i Base Y Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ 0 ˙ = Y i = 0 s + 1 i × ˙ T M × ˙ G i
70 55 68 69 syl2an2r N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ 0 ˙ = Y i = 0 s + 1 i × ˙ T M × ˙ G i
71 62 70 eqtrd N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i + ˙ Y i s + 1 + 1 i × ˙ T M × ˙ G i = Y i = 0 s + 1 i × ˙ T M × ˙ G i
72 32 ad2antrl N Fin R CRing M B s b B 0 s s 0
73 12 11 20 72 66 gsummptfzsplit N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i = Y i = 0 s i × ˙ T M × ˙ G i + ˙ Y i s + 1 i × ˙ T M × ˙ G i
74 elfznn0 i 0 s i 0
75 74 28 sylan2 N Fin R CRing M B s b B 0 s i 0 s i × ˙ T M × ˙ G i Base Y
76 12 11 20 72 75 gsummptfzsplitl N Fin R CRing M B s b B 0 s Y i = 0 s i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ G i + ˙ Y i 0 i × ˙ T M × ˙ G i
77 55 adantr N Fin R CRing M B s b B 0 s Y Mnd
78 0nn0 0 0
79 78 a1i N Fin R CRing M B s b B 0 s 0 0
80 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl N Fin R CRing M B s b B 0 s 0 0 0 × ˙ T M × ˙ G 0 Base Y
81 79 80 mpd3an3 N Fin R CRing M B s b B 0 s 0 × ˙ T M × ˙ G 0 Base Y
82 oveq1 i = 0 i × ˙ T M = 0 × ˙ T M
83 fveq2 i = 0 G i = G 0
84 82 83 oveq12d i = 0 i × ˙ T M × ˙ G i = 0 × ˙ T M × ˙ G 0
85 12 84 gsumsn Y Mnd 0 0 0 × ˙ T M × ˙ G 0 Base Y Y i 0 i × ˙ T M × ˙ G i = 0 × ˙ T M × ˙ G 0
86 77 79 81 85 syl3anc N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = 0 × ˙ T M × ˙ G 0
87 86 oveq2d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i + ˙ Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0
88 76 87 eqtrd N Fin R CRing M B s b B 0 s Y i = 0 s i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0
89 ovexd N Fin R CRing M B s b B 0 s s + 1 V
90 1nn0 1 0
91 90 a1i N Fin R CRing M B s b B 0 s 1 0
92 72 91 nn0addcld N Fin R CRing M B s b B 0 s s + 1 0
93 1 2 3 4 5 6 7 8 9 10 chfacfpmmulcl N Fin R CRing M B s b B 0 s s + 1 0 s + 1 × ˙ T M × ˙ G s + 1 Base Y
94 92 93 mpd3an3 N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ G s + 1 Base Y
95 oveq1 i = s + 1 i × ˙ T M = s + 1 × ˙ T M
96 fveq2 i = s + 1 G i = G s + 1
97 95 96 oveq12d i = s + 1 i × ˙ T M × ˙ G i = s + 1 × ˙ T M × ˙ G s + 1
98 12 97 gsumsn Y Mnd s + 1 V s + 1 × ˙ T M × ˙ G s + 1 Base Y Y i s + 1 i × ˙ T M × ˙ G i = s + 1 × ˙ T M × ˙ G s + 1
99 77 89 94 98 syl3anc N Fin R CRing M B s b B 0 s Y i s + 1 i × ˙ T M × ˙ G i = s + 1 × ˙ T M × ˙ G s + 1
100 88 99 oveq12d N Fin R CRing M B s b B 0 s Y i = 0 s i × ˙ T M × ˙ G i + ˙ Y i s + 1 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1
101 fzfid N Fin R CRing M B s b B 0 s 1 s Fin
102 simpll N Fin R CRing M B s b B 0 s i 1 s N Fin R CRing M B
103 simplr N Fin R CRing M B s b B 0 s i 1 s s b B 0 s
104 elfznn i 1 s i
105 104 nnnn0d i 1 s i 0
106 105 adantl N Fin R CRing M B s b B 0 s i 1 s i 0
107 102 103 106 27 syl3anc N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ G i Base Y
108 107 ralrimiva N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ G i Base Y
109 12 20 101 108 gsummptcl N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i Base Y
110 12 11 mndass Y Mnd Y i = 1 s i × ˙ T M × ˙ G i Base Y 0 × ˙ T M × ˙ G 0 Base Y s + 1 × ˙ T M × ˙ G s + 1 Base Y Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1
111 77 109 81 94 110 syl13anc N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1
112 104 nnne0d i 1 s i 0
113 112 ad2antlr N Fin R CRing M B s b B 0 s i 1 s n = i i 0
114 neeq1 n = i n 0 i 0
115 114 adantl N Fin R CRing M B s b B 0 s i 1 s n = i n 0 i 0
116 113 115 mpbird N Fin R CRing M B s b B 0 s i 1 s n = i n 0
117 eqneqall n = 0 n 0 0 ˙ = T b i 1
118 116 117 mpan9 N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 0 ˙ = T b i 1
119 simplr N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 n = i
120 eqeq1 0 = n 0 = i n = i
121 120 eqcoms n = 0 0 = i n = i
122 121 adantl N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 0 = i n = i
123 119 122 mpbird N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 0 = i
124 123 fveq2d N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 b 0 = b i
125 124 fveq2d N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 T b 0 = T b i
126 125 oveq2d N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 T M × ˙ T b 0 = T M × ˙ T b i
127 118 126 oveq12d N Fin R CRing M B s b B 0 s i 1 s n = i n = 0 0 ˙ - ˙ T M × ˙ T b 0 = T b i 1 - ˙ T M × ˙ T b i
128 elfz2 i 1 s 1 s i 1 i i s
129 zleltp1 i s i s i < s + 1
130 129 ancoms s i i s i < s + 1
131 130 3adant1 1 s i i s i < s + 1
132 131 biimpcd i s 1 s i i < s + 1
133 132 adantl 1 i i s 1 s i i < s + 1
134 133 impcom 1 s i 1 i i s i < s + 1
135 134 orcd 1 s i 1 i i s i < s + 1 s + 1 < i
136 zre s s
137 1red s 1
138 136 137 readdcld s s + 1
139 zre i i
140 138 139 anim12ci s i i s + 1
141 140 3adant1 1 s i i s + 1
142 lttri2 i s + 1 i s + 1 i < s + 1 s + 1 < i
143 141 142 syl 1 s i i s + 1 i < s + 1 s + 1 < i
144 143 adantr 1 s i 1 i i s i s + 1 i < s + 1 s + 1 < i
145 135 144 mpbird 1 s i 1 i i s i s + 1
146 128 145 sylbi i 1 s i s + 1
147 146 ad2antlr N Fin R CRing M B s b B 0 s i 1 s n = i i s + 1
148 neeq1 n = i n s + 1 i s + 1
149 148 adantl N Fin R CRing M B s b B 0 s i 1 s n = i n s + 1 i s + 1
150 147 149 mpbird N Fin R CRing M B s b B 0 s i 1 s n = i n s + 1
151 150 adantr N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 n s + 1
152 151 neneqd N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1
153 152 pm2.21d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 n = s + 1 T b s = T b i 1 - ˙ T M × ˙ T b i
154 153 imp N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 n = s + 1 T b s = T b i 1 - ˙ T M × ˙ T b i
155 104 nnred i 1 s i
156 eleq1w n = i n i
157 155 156 syl5ibrcom i 1 s n = i n
158 157 adantl N Fin R CRing M B s b B 0 s i 1 s n = i n
159 158 imp N Fin R CRing M B s b B 0 s i 1 s n = i n
160 72 nn0red N Fin R CRing M B s b B 0 s s
161 160 ad2antrr N Fin R CRing M B s b B 0 s i 1 s n = i s
162 1red N Fin R CRing M B s b B 0 s i 1 s n = i 1
163 161 162 readdcld N Fin R CRing M B s b B 0 s i 1 s n = i s + 1
164 128 134 sylbi i 1 s i < s + 1
165 164 ad2antlr N Fin R CRing M B s b B 0 s i 1 s n = i i < s + 1
166 breq1 n = i n < s + 1 i < s + 1
167 166 adantl N Fin R CRing M B s b B 0 s i 1 s n = i n < s + 1 i < s + 1
168 165 167 mpbird N Fin R CRing M B s b B 0 s i 1 s n = i n < s + 1
169 159 163 168 ltnsymd N Fin R CRing M B s b B 0 s i 1 s n = i ¬ s + 1 < n
170 169 pm2.21d N Fin R CRing M B s b B 0 s i 1 s n = i s + 1 < n 0 ˙ = T b i 1 - ˙ T M × ˙ T b i
171 170 ad2antrr N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 s + 1 < n 0 ˙ = T b i 1 - ˙ T M × ˙ T b i
172 171 imp N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 s + 1 < n 0 ˙ = T b i 1 - ˙ T M × ˙ T b i
173 simp-4r N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n n = i
174 173 fvoveq1d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n b n 1 = b i 1
175 174 fveq2d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 = T b i 1
176 173 fveq2d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n b n = b i
177 176 fveq2d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n = T b i
178 177 oveq2d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T M × ˙ T b n = T M × ˙ T b i
179 175 178 oveq12d N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 ¬ s + 1 < n T b n 1 - ˙ T M × ˙ T b n = T b i 1 - ˙ T M × ˙ T b i
180 172 179 ifeqda N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 ¬ n = s + 1 if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b i 1 - ˙ T M × ˙ T b i
181 154 180 ifeqda N Fin R CRing M B s b B 0 s i 1 s n = i ¬ n = 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b i 1 - ˙ T M × ˙ T b i
182 127 181 ifeqda N Fin R CRing M B s b B 0 s i 1 s n = i if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b i 1 - ˙ T M × ˙ T b i
183 ovexd N Fin R CRing M B s b B 0 s i 1 s T b i 1 - ˙ T M × ˙ T b i V
184 9 182 106 183 fvmptd2 N Fin R CRing M B s b B 0 s i 1 s G i = T b i 1 - ˙ T M × ˙ T b i
185 184 oveq2d N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ G i = i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i
186 185 mpteq2dva N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ G i = i 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i
187 186 oveq2d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i
188 nn0p1gt0 s 0 0 < s + 1
189 0red s 0 0
190 ltne 0 0 < s + 1 s + 1 0
191 189 190 sylan s 0 0 < s + 1 s + 1 0
192 neeq1 n = s + 1 n 0 s + 1 0
193 191 192 syl5ibrcom s 0 0 < s + 1 n = s + 1 n 0
194 32 188 193 syl2anc2 s n = s + 1 n 0
195 194 ad2antrl N Fin R CRing M B s b B 0 s n = s + 1 n 0
196 195 imp N Fin R CRing M B s b B 0 s n = s + 1 n 0
197 eqneqall n = 0 n 0 0 ˙ - ˙ T M × ˙ T b 0 = T b s
198 196 197 mpan9 N Fin R CRing M B s b B 0 s n = s + 1 n = 0 0 ˙ - ˙ T M × ˙ T b 0 = T b s
199 iftrue n = s + 1 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b s
200 199 ad2antlr N Fin R CRing M B s b B 0 s n = s + 1 ¬ n = 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b s
201 198 200 ifeqda N Fin R CRing M B s b B 0 s n = s + 1 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = T b s
202 72 33 syl N Fin R CRing M B s b B 0 s s + 1 0
203 fvexd N Fin R CRing M B s b B 0 s T b s V
204 9 201 202 203 fvmptd2 N Fin R CRing M B s b B 0 s G s + 1 = T b s
205 204 oveq2d N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ G s + 1 = s + 1 × ˙ T M × ˙ T b s
206 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
207 13 206 syl3an2 N Fin R CRing M B T M Base Y
208 eqid mulGrp Y = mulGrp Y
209 208 12 mgpbas Base Y = Base mulGrp Y
210 eqid 0 mulGrp Y = 0 mulGrp Y
211 209 210 10 mulg0 T M Base Y 0 × ˙ T M = 0 mulGrp Y
212 207 211 syl N Fin R CRing M B 0 × ˙ T M = 0 mulGrp Y
213 eqid 1 Y = 1 Y
214 208 213 ringidval 1 Y = 0 mulGrp Y
215 212 214 eqtr4di N Fin R CRing M B 0 × ˙ T M = 1 Y
216 215 adantr N Fin R CRing M B s b B 0 s 0 × ˙ T M = 1 Y
217 216 oveq1d N Fin R CRing M B s b B 0 s 0 × ˙ T M × ˙ G 0 = 1 Y × ˙ G 0
218 52 3adant3 N Fin R CRing M B Y Ring
219 1 2 3 4 5 6 7 8 9 chfacfisf N Fin R Ring M B s b B 0 s G : 0 Base Y
220 13 219 syl3anl2 N Fin R CRing M B s b B 0 s G : 0 Base Y
221 220 79 ffvelrnd N Fin R CRing M B s b B 0 s G 0 Base Y
222 12 5 213 ringlidm Y Ring G 0 Base Y 1 Y × ˙ G 0 = G 0
223 218 221 222 syl2an2r N Fin R CRing M B s b B 0 s 1 Y × ˙ G 0 = G 0
224 iftrue n = 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n = 0 ˙ - ˙ T M × ˙ T b 0
225 ovexd N Fin R CRing M B s b B 0 s 0 ˙ - ˙ T M × ˙ T b 0 V
226 9 224 79 225 fvmptd3 N Fin R CRing M B s b B 0 s G 0 = 0 ˙ - ˙ T M × ˙ T b 0
227 217 223 226 3eqtrd N Fin R CRing M B s b B 0 s 0 × ˙ T M × ˙ G 0 = 0 ˙ - ˙ T M × ˙ T b 0
228 205 227 oveq12d N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ G s + 1 + ˙ 0 × ˙ T M × ˙ G 0 = s + 1 × ˙ T M × ˙ T b s + ˙ 0 ˙ - ˙ T M × ˙ T b 0
229 12 11 cmncom Y CMnd 0 × ˙ T M × ˙ G 0 Base Y s + 1 × ˙ T M × ˙ G s + 1 Base Y 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = s + 1 × ˙ T M × ˙ G s + 1 + ˙ 0 × ˙ T M × ˙ G 0
230 20 81 94 229 syl3anc N Fin R CRing M B s b B 0 s 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = s + 1 × ˙ T M × ˙ G s + 1 + ˙ 0 × ˙ T M × ˙ G 0
231 ringgrp Y Ring Y Grp
232 17 231 syl N Fin R CRing M B Y Grp
233 232 adantr N Fin R CRing M B s b B 0 s Y Grp
234 205 94 eqeltrrd N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ T b s Base Y
235 17 adantr N Fin R CRing M B s b B 0 s Y Ring
236 207 adantr N Fin R CRing M B s b B 0 s T M Base Y
237 simpl1 N Fin R CRing M B s b B 0 s N Fin
238 13 3ad2ant2 N Fin R CRing M B R Ring
239 238 adantr N Fin R CRing M B s b B 0 s R Ring
240 elmapi b B 0 s b : 0 s B
241 240 adantl s b B 0 s b : 0 s B
242 241 adantl N Fin R CRing M B s b B 0 s b : 0 s B
243 0elfz s 0 0 0 s
244 32 243 syl s 0 0 s
245 244 ad2antrl N Fin R CRing M B s b B 0 s 0 0 s
246 242 245 ffvelrnd N Fin R CRing M B s b B 0 s b 0 B
247 8 1 2 3 4 mat2pmatbas N Fin R Ring b 0 B T b 0 Base Y
248 237 239 246 247 syl3anc N Fin R CRing M B s b B 0 s T b 0 Base Y
249 12 5 ringcl Y Ring T M Base Y T b 0 Base Y T M × ˙ T b 0 Base Y
250 235 236 248 249 syl3anc N Fin R CRing M B s b B 0 s T M × ˙ T b 0 Base Y
251 12 7 6 11 grpsubadd0sub Y Grp s + 1 × ˙ T M × ˙ T b s Base Y T M × ˙ T b 0 Base Y s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = s + 1 × ˙ T M × ˙ T b s + ˙ 0 ˙ - ˙ T M × ˙ T b 0
252 233 234 250 251 syl3anc N Fin R CRing M B s b B 0 s s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = s + 1 × ˙ T M × ˙ T b s + ˙ 0 ˙ - ˙ T M × ˙ T b 0
253 228 230 252 3eqtr4d N Fin R CRing M B s b B 0 s 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
254 187 253 oveq12d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
255 111 254 eqtrd N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ G i + ˙ 0 × ˙ T M × ˙ G 0 + ˙ s + 1 × ˙ T M × ˙ G s + 1 = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
256 73 100 255 3eqtrd N Fin R CRing M B s b B 0 s Y i = 0 s + 1 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
257 38 71 256 3eqtrd N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0