Step |
Hyp |
Ref |
Expression |
1 |
|
cayhamlem1.a |
|
2 |
|
cayhamlem1.b |
|
3 |
|
cayhamlem1.p |
|
4 |
|
cayhamlem1.y |
|
5 |
|
cayhamlem1.r |
|
6 |
|
cayhamlem1.s |
|
7 |
|
cayhamlem1.0 |
|
8 |
|
cayhamlem1.t |
|
9 |
|
cayhamlem1.g |
|
10 |
|
cayhamlem1.e |
|
11 |
|
chfacfpmmulgsum.p |
|
12 |
|
eqid |
|
13 |
|
crngring |
|
14 |
13
|
anim2i |
|
15 |
14
|
3adant3 |
|
16 |
3 4
|
pmatring |
|
17 |
15 16
|
syl |
|
18 |
|
ringcmn |
|
19 |
17 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
|
nn0ex |
|
22 |
21
|
a1i |
|
23 |
|
simpll |
|
24 |
|
simplr |
|
25 |
|
simpr |
|
26 |
23 24 25
|
3jca |
|
27 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
|
28 |
26 27
|
syl |
|
29 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulfsupp |
|
30 |
|
nn0disj |
|
31 |
30
|
a1i |
|
32 |
|
nnnn0 |
|
33 |
|
peano2nn0 |
|
34 |
32 33
|
syl |
|
35 |
|
nn0split |
|
36 |
34 35
|
syl |
|
37 |
36
|
ad2antrl |
|
38 |
12 7 11 20 22 28 29 31 37
|
gsumsplit2 |
|
39 |
|
simpll |
|
40 |
|
simplr |
|
41 |
|
nncn |
|
42 |
|
add1p1 |
|
43 |
41 42
|
syl |
|
44 |
43
|
ad2antrl |
|
45 |
44
|
fveq2d |
|
46 |
45
|
eleq2d |
|
47 |
46
|
biimpa |
|
48 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmul0 |
|
49 |
39 40 47 48
|
syl3anc |
|
50 |
49
|
mpteq2dva |
|
51 |
50
|
oveq2d |
|
52 |
13 16
|
sylan2 |
|
53 |
|
ringmnd |
|
54 |
52 53
|
syl |
|
55 |
54
|
3adant3 |
|
56 |
|
fvex |
|
57 |
55 56
|
jctir |
|
58 |
57
|
adantr |
|
59 |
7
|
gsumz |
|
60 |
58 59
|
syl |
|
61 |
51 60
|
eqtrd |
|
62 |
61
|
oveq2d |
|
63 |
|
fzfid |
|
64 |
|
elfznn0 |
|
65 |
64 26
|
sylan2 |
|
66 |
65 27
|
syl |
|
67 |
66
|
ralrimiva |
|
68 |
12 20 63 67
|
gsummptcl |
|
69 |
12 11 7
|
mndrid |
|
70 |
55 68 69
|
syl2an2r |
|
71 |
62 70
|
eqtrd |
|
72 |
32
|
ad2antrl |
|
73 |
12 11 20 72 66
|
gsummptfzsplit |
|
74 |
|
elfznn0 |
|
75 |
74 28
|
sylan2 |
|
76 |
12 11 20 72 75
|
gsummptfzsplitl |
|
77 |
55
|
adantr |
|
78 |
|
0nn0 |
|
79 |
78
|
a1i |
|
80 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
|
81 |
79 80
|
mpd3an3 |
|
82 |
|
oveq1 |
|
83 |
|
fveq2 |
|
84 |
82 83
|
oveq12d |
|
85 |
12 84
|
gsumsn |
|
86 |
77 79 81 85
|
syl3anc |
|
87 |
86
|
oveq2d |
|
88 |
76 87
|
eqtrd |
|
89 |
|
ovexd |
|
90 |
|
1nn0 |
|
91 |
90
|
a1i |
|
92 |
72 91
|
nn0addcld |
|
93 |
1 2 3 4 5 6 7 8 9 10
|
chfacfpmmulcl |
|
94 |
92 93
|
mpd3an3 |
|
95 |
|
oveq1 |
|
96 |
|
fveq2 |
|
97 |
95 96
|
oveq12d |
|
98 |
12 97
|
gsumsn |
|
99 |
77 89 94 98
|
syl3anc |
|
100 |
88 99
|
oveq12d |
|
101 |
|
fzfid |
|
102 |
|
simpll |
|
103 |
|
simplr |
|
104 |
|
elfznn |
|
105 |
104
|
nnnn0d |
|
106 |
105
|
adantl |
|
107 |
102 103 106 27
|
syl3anc |
|
108 |
107
|
ralrimiva |
|
109 |
12 20 101 108
|
gsummptcl |
|
110 |
12 11
|
mndass |
|
111 |
77 109 81 94 110
|
syl13anc |
|
112 |
104
|
nnne0d |
|
113 |
112
|
ad2antlr |
|
114 |
|
neeq1 |
|
115 |
114
|
adantl |
|
116 |
113 115
|
mpbird |
|
117 |
|
eqneqall |
|
118 |
116 117
|
mpan9 |
|
119 |
|
simplr |
|
120 |
|
eqeq1 |
|
121 |
120
|
eqcoms |
|
122 |
121
|
adantl |
|
123 |
119 122
|
mpbird |
|
124 |
123
|
fveq2d |
|
125 |
124
|
fveq2d |
|
126 |
125
|
oveq2d |
|
127 |
118 126
|
oveq12d |
|
128 |
|
elfz2 |
|
129 |
|
zleltp1 |
|
130 |
129
|
ancoms |
|
131 |
130
|
3adant1 |
|
132 |
131
|
biimpcd |
|
133 |
132
|
adantl |
|
134 |
133
|
impcom |
|
135 |
134
|
orcd |
|
136 |
|
zre |
|
137 |
|
1red |
|
138 |
136 137
|
readdcld |
|
139 |
|
zre |
|
140 |
138 139
|
anim12ci |
|
141 |
140
|
3adant1 |
|
142 |
|
lttri2 |
|
143 |
141 142
|
syl |
|
144 |
143
|
adantr |
|
145 |
135 144
|
mpbird |
|
146 |
128 145
|
sylbi |
|
147 |
146
|
ad2antlr |
|
148 |
|
neeq1 |
|
149 |
148
|
adantl |
|
150 |
147 149
|
mpbird |
|
151 |
150
|
adantr |
|
152 |
151
|
neneqd |
|
153 |
152
|
pm2.21d |
|
154 |
153
|
imp |
|
155 |
104
|
nnred |
|
156 |
|
eleq1w |
|
157 |
155 156
|
syl5ibrcom |
|
158 |
157
|
adantl |
|
159 |
158
|
imp |
|
160 |
72
|
nn0red |
|
161 |
160
|
ad2antrr |
|
162 |
|
1red |
|
163 |
161 162
|
readdcld |
|
164 |
128 134
|
sylbi |
|
165 |
164
|
ad2antlr |
|
166 |
|
breq1 |
|
167 |
166
|
adantl |
|
168 |
165 167
|
mpbird |
|
169 |
159 163 168
|
ltnsymd |
|
170 |
169
|
pm2.21d |
|
171 |
170
|
ad2antrr |
|
172 |
171
|
imp |
|
173 |
|
simp-4r |
|
174 |
173
|
fvoveq1d |
|
175 |
174
|
fveq2d |
|
176 |
173
|
fveq2d |
|
177 |
176
|
fveq2d |
|
178 |
177
|
oveq2d |
|
179 |
175 178
|
oveq12d |
|
180 |
172 179
|
ifeqda |
|
181 |
154 180
|
ifeqda |
|
182 |
127 181
|
ifeqda |
|
183 |
|
ovexd |
|
184 |
9 182 106 183
|
fvmptd2 |
|
185 |
184
|
oveq2d |
|
186 |
185
|
mpteq2dva |
|
187 |
186
|
oveq2d |
|
188 |
|
nn0p1gt0 |
|
189 |
|
0red |
|
190 |
|
ltne |
|
191 |
189 190
|
sylan |
|
192 |
|
neeq1 |
|
193 |
191 192
|
syl5ibrcom |
|
194 |
32 188 193
|
syl2anc2 |
|
195 |
194
|
ad2antrl |
|
196 |
195
|
imp |
|
197 |
|
eqneqall |
|
198 |
196 197
|
mpan9 |
|
199 |
|
iftrue |
|
200 |
199
|
ad2antlr |
|
201 |
198 200
|
ifeqda |
|
202 |
72 33
|
syl |
|
203 |
|
fvexd |
|
204 |
9 201 202 203
|
fvmptd2 |
|
205 |
204
|
oveq2d |
|
206 |
8 1 2 3 4
|
mat2pmatbas |
|
207 |
13 206
|
syl3an2 |
|
208 |
|
eqid |
|
209 |
208 12
|
mgpbas |
|
210 |
|
eqid |
|
211 |
209 210 10
|
mulg0 |
|
212 |
207 211
|
syl |
|
213 |
|
eqid |
|
214 |
208 213
|
ringidval |
|
215 |
212 214
|
eqtr4di |
|
216 |
215
|
adantr |
|
217 |
216
|
oveq1d |
|
218 |
52
|
3adant3 |
|
219 |
1 2 3 4 5 6 7 8 9
|
chfacfisf |
|
220 |
13 219
|
syl3anl2 |
|
221 |
220 79
|
ffvelrnd |
|
222 |
12 5 213
|
ringlidm |
|
223 |
218 221 222
|
syl2an2r |
|
224 |
|
iftrue |
|
225 |
|
ovexd |
|
226 |
9 224 79 225
|
fvmptd3 |
|
227 |
217 223 226
|
3eqtrd |
|
228 |
205 227
|
oveq12d |
|
229 |
12 11
|
cmncom |
|
230 |
20 81 94 229
|
syl3anc |
|
231 |
|
ringgrp |
|
232 |
17 231
|
syl |
|
233 |
232
|
adantr |
|
234 |
205 94
|
eqeltrrd |
|
235 |
17
|
adantr |
|
236 |
207
|
adantr |
|
237 |
|
simpl1 |
|
238 |
13
|
3ad2ant2 |
|
239 |
238
|
adantr |
|
240 |
|
elmapi |
|
241 |
240
|
adantl |
|
242 |
241
|
adantl |
|
243 |
|
0elfz |
|
244 |
32 243
|
syl |
|
245 |
244
|
ad2antrl |
|
246 |
242 245
|
ffvelrnd |
|
247 |
8 1 2 3 4
|
mat2pmatbas |
|
248 |
237 239 246 247
|
syl3anc |
|
249 |
12 5
|
ringcl |
|
250 |
235 236 248 249
|
syl3anc |
|
251 |
12 7 6 11
|
grpsubadd0sub |
|
252 |
233 234 250 251
|
syl3anc |
|
253 |
228 230 252
|
3eqtr4d |
|
254 |
187 253
|
oveq12d |
|
255 |
111 254
|
eqtrd |
|
256 |
73 100 255
|
3eqtrd |
|
257 |
38 71 256
|
3eqtrd |
|