Metamath Proof Explorer


Theorem chfacfpmmulgsum2

Description: Breaking up a sum of values of the "characteristic factor function" multiplied with a constant polynomial matrix. (Contributed by AV, 23-Nov-2019)

Ref Expression
Hypotheses cayhamlem1.a A = N Mat R
cayhamlem1.b B = Base A
cayhamlem1.p P = Poly 1 R
cayhamlem1.y Y = N Mat P
cayhamlem1.r × ˙ = Y
cayhamlem1.s - ˙ = - Y
cayhamlem1.0 0 ˙ = 0 Y
cayhamlem1.t T = N matToPolyMat R
cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cayhamlem1.e × ˙ = mulGrp Y
chfacfpmmulgsum.p + ˙ = + Y
Assertion chfacfpmmulgsum2 N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0

Proof

Step Hyp Ref Expression
1 cayhamlem1.a A = N Mat R
2 cayhamlem1.b B = Base A
3 cayhamlem1.p P = Poly 1 R
4 cayhamlem1.y Y = N Mat P
5 cayhamlem1.r × ˙ = Y
6 cayhamlem1.s - ˙ = - Y
7 cayhamlem1.0 0 ˙ = 0 Y
8 cayhamlem1.t T = N matToPolyMat R
9 cayhamlem1.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 cayhamlem1.e × ˙ = mulGrp Y
11 chfacfpmmulgsum.p + ˙ = + Y
12 1 2 3 4 5 6 7 8 9 10 11 chfacfpmmulgsum N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
13 eqid Base Y = Base Y
14 crngring R CRing R Ring
15 14 anim2i N Fin R CRing N Fin R Ring
16 3 4 pmatring N Fin R Ring Y Ring
17 15 16 syl N Fin R CRing Y Ring
18 17 3adant3 N Fin R CRing M B Y Ring
19 18 ad2antrr N Fin R CRing M B s b B 0 s i 1 s Y Ring
20 eqid mulGrp Y = mulGrp Y
21 20 ringmgp Y Ring mulGrp Y Mnd
22 mndmgm mulGrp Y Mnd mulGrp Y Mgm
23 21 22 syl Y Ring mulGrp Y Mgm
24 18 23 syl N Fin R CRing M B mulGrp Y Mgm
25 24 ad2antrr N Fin R CRing M B s b B 0 s i 1 s mulGrp Y Mgm
26 elfznn i 1 s i
27 26 adantl N Fin R CRing M B s b B 0 s i 1 s i
28 8 1 2 3 4 mat2pmatbas N Fin R Ring M B T M Base Y
29 14 28 syl3an2 N Fin R CRing M B T M Base Y
30 29 ad2antrr N Fin R CRing M B s b B 0 s i 1 s T M Base Y
31 20 13 mgpbas Base Y = Base mulGrp Y
32 31 10 mulgnncl mulGrp Y Mgm i T M Base Y i × ˙ T M Base Y
33 25 27 30 32 syl3anc N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M Base Y
34 15 3adant3 N Fin R CRing M B N Fin R Ring
35 34 ad2antrr N Fin R CRing M B s b B 0 s i 1 s N Fin R Ring
36 elmapi b B 0 s b : 0 s B
37 36 adantl s b B 0 s b : 0 s B
38 37 adantl N Fin R CRing M B s b B 0 s b : 0 s B
39 38 adantr N Fin R CRing M B s b B 0 s i 1 s b : 0 s B
40 1nn0 1 0
41 40 a1i s i 1 s 1 0
42 nnnn0 s s 0
43 42 adantr s i 1 s s 0
44 nnge1 s 1 s
45 44 adantr s i 1 s 1 s
46 elfz2nn0 1 0 s 1 0 s 0 1 s
47 41 43 45 46 syl3anbrc s i 1 s 1 0 s
48 simpr s i 1 s i 1 s
49 fz0fzdiffz0 1 0 s i 1 s i 1 0 s
50 47 48 49 syl2anc s i 1 s i 1 0 s
51 50 ex s i 1 s i 1 0 s
52 51 ad2antrl N Fin R CRing M B s b B 0 s i 1 s i 1 0 s
53 52 imp N Fin R CRing M B s b B 0 s i 1 s i 1 0 s
54 39 53 ffvelrnd N Fin R CRing M B s b B 0 s i 1 s b i 1 B
55 df-3an N Fin R Ring b i 1 B N Fin R Ring b i 1 B
56 35 54 55 sylanbrc N Fin R CRing M B s b B 0 s i 1 s N Fin R Ring b i 1 B
57 8 1 2 3 4 mat2pmatbas N Fin R Ring b i 1 B T b i 1 Base Y
58 56 57 syl N Fin R CRing M B s b B 0 s i 1 s T b i 1 Base Y
59 34 16 syl N Fin R CRing M B Y Ring
60 59 ad2antrr N Fin R CRing M B s b B 0 s i 1 s Y Ring
61 simpl1 N Fin R CRing M B s b B 0 s N Fin
62 14 3ad2ant2 N Fin R CRing M B R Ring
63 62 adantr N Fin R CRing M B s b B 0 s R Ring
64 42 ad2antrl N Fin R CRing M B s b B 0 s s 0
65 61 63 64 3jca N Fin R CRing M B s b B 0 s N Fin R Ring s 0
66 65 adantr N Fin R CRing M B s b B 0 s i 1 s N Fin R Ring s 0
67 simpr s b B 0 s b B 0 s
68 67 adantl N Fin R CRing M B s b B 0 s b B 0 s
69 fz1ssfz0 1 s 0 s
70 69 sseli i 1 s i 0 s
71 68 70 anim12i N Fin R CRing M B s b B 0 s i 1 s b B 0 s i 0 s
72 1 2 3 4 8 m2pmfzmap N Fin R Ring s 0 b B 0 s i 0 s T b i Base Y
73 66 71 72 syl2anc N Fin R CRing M B s b B 0 s i 1 s T b i Base Y
74 13 5 ringcl Y Ring T M Base Y T b i Base Y T M × ˙ T b i Base Y
75 60 30 73 74 syl3anc N Fin R CRing M B s b B 0 s i 1 s T M × ˙ T b i Base Y
76 13 5 6 19 33 58 75 ringsubdi N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i = i × ˙ T M × ˙ T b i 1 - ˙ i × ˙ T M × ˙ T M × ˙ T b i
77 13 5 ringass Y Ring i × ˙ T M Base Y T M Base Y T b i Base Y i × ˙ T M × ˙ T M × ˙ T b i = i × ˙ T M × ˙ T M × ˙ T b i
78 60 33 30 73 77 syl13anc N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T M × ˙ T b i = i × ˙ T M × ˙ T M × ˙ T b i
79 78 eqcomd N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T M × ˙ T b i = i × ˙ T M × ˙ T M × ˙ T b i
80 29 31 eleqtrdi N Fin R CRing M B T M Base mulGrp Y
81 80 adantr N Fin R CRing M B s b B 0 s T M Base mulGrp Y
82 eqid Base mulGrp Y = Base mulGrp Y
83 eqid + mulGrp Y = + mulGrp Y
84 82 10 83 mulgnnp1 i T M Base mulGrp Y i + 1 × ˙ T M = i × ˙ T M + mulGrp Y T M
85 26 81 84 syl2anr N Fin R CRing M B s b B 0 s i 1 s i + 1 × ˙ T M = i × ˙ T M + mulGrp Y T M
86 20 5 mgpplusg × ˙ = + mulGrp Y
87 86 eqcomi + mulGrp Y = × ˙
88 87 a1i N Fin R CRing M B s b B 0 s i 1 s + mulGrp Y = × ˙
89 88 oveqd N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M + mulGrp Y T M = i × ˙ T M × ˙ T M
90 85 89 eqtrd N Fin R CRing M B s b B 0 s i 1 s i + 1 × ˙ T M = i × ˙ T M × ˙ T M
91 90 eqcomd N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T M = i + 1 × ˙ T M
92 91 oveq1d N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T M × ˙ T b i = i + 1 × ˙ T M × ˙ T b i
93 79 92 eqtrd N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T M × ˙ T b i = i + 1 × ˙ T M × ˙ T b i
94 93 oveq2d N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T b i 1 - ˙ i × ˙ T M × ˙ T M × ˙ T b i = i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i
95 76 94 eqtrd N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i = i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i
96 95 mpteq2dva N Fin R CRing M B s b B 0 s i 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i = i 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i
97 96 oveq2d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i
98 97 oveq1d N Fin R CRing M B s b B 0 s Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0 = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0
99 12 98 eqtrd N Fin R CRing M B s b B 0 s Y i 0 i × ˙ T M × ˙ G i = Y i = 1 s i × ˙ T M × ˙ T b i 1 - ˙ i + 1 × ˙ T M × ˙ T b i + ˙ s + 1 × ˙ T M × ˙ T b s - ˙ T M × ˙ T b 0