| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cayhamlem1.a |
|
| 2 |
|
cayhamlem1.b |
|
| 3 |
|
cayhamlem1.p |
|
| 4 |
|
cayhamlem1.y |
|
| 5 |
|
cayhamlem1.r |
|
| 6 |
|
cayhamlem1.s |
|
| 7 |
|
cayhamlem1.0 |
|
| 8 |
|
cayhamlem1.t |
|
| 9 |
|
cayhamlem1.g |
|
| 10 |
|
cayhamlem1.e |
|
| 11 |
|
chfacfpmmulgsum.p |
|
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
chfacfpmmulgsum |
|
| 13 |
|
eqid |
|
| 14 |
|
crngring |
|
| 15 |
14
|
anim2i |
|
| 16 |
3 4
|
pmatring |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
3adant3 |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
eqid |
|
| 21 |
20
|
ringmgp |
|
| 22 |
|
mndmgm |
|
| 23 |
21 22
|
syl |
|
| 24 |
18 23
|
syl |
|
| 25 |
24
|
ad2antrr |
|
| 26 |
|
elfznn |
|
| 27 |
26
|
adantl |
|
| 28 |
8 1 2 3 4
|
mat2pmatbas |
|
| 29 |
14 28
|
syl3an2 |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
20 13
|
mgpbas |
|
| 32 |
31 10
|
mulgnncl |
|
| 33 |
25 27 30 32
|
syl3anc |
|
| 34 |
15
|
3adant3 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
elmapi |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
1nn0 |
|
| 41 |
40
|
a1i |
|
| 42 |
|
nnnn0 |
|
| 43 |
42
|
adantr |
|
| 44 |
|
nnge1 |
|
| 45 |
44
|
adantr |
|
| 46 |
|
elfz2nn0 |
|
| 47 |
41 43 45 46
|
syl3anbrc |
|
| 48 |
|
simpr |
|
| 49 |
|
fz0fzdiffz0 |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
50
|
ex |
|
| 52 |
51
|
ad2antrl |
|
| 53 |
52
|
imp |
|
| 54 |
39 53
|
ffvelcdmd |
|
| 55 |
|
df-3an |
|
| 56 |
35 54 55
|
sylanbrc |
|
| 57 |
8 1 2 3 4
|
mat2pmatbas |
|
| 58 |
56 57
|
syl |
|
| 59 |
34 16
|
syl |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
|
simpl1 |
|
| 62 |
14
|
3ad2ant2 |
|
| 63 |
62
|
adantr |
|
| 64 |
42
|
ad2antrl |
|
| 65 |
61 63 64
|
3jca |
|
| 66 |
65
|
adantr |
|
| 67 |
|
simpr |
|
| 68 |
67
|
adantl |
|
| 69 |
|
fz1ssfz0 |
|
| 70 |
69
|
sseli |
|
| 71 |
68 70
|
anim12i |
|
| 72 |
1 2 3 4 8
|
m2pmfzmap |
|
| 73 |
66 71 72
|
syl2anc |
|
| 74 |
13 5
|
ringcl |
|
| 75 |
60 30 73 74
|
syl3anc |
|
| 76 |
13 5 6 19 33 58 75
|
ringsubdi |
|
| 77 |
13 5
|
ringass |
|
| 78 |
60 33 30 73 77
|
syl13anc |
|
| 79 |
78
|
eqcomd |
|
| 80 |
29 31
|
eleqtrdi |
|
| 81 |
80
|
adantr |
|
| 82 |
|
eqid |
|
| 83 |
|
eqid |
|
| 84 |
82 10 83
|
mulgnnp1 |
|
| 85 |
26 81 84
|
syl2anr |
|
| 86 |
20 5
|
mgpplusg |
|
| 87 |
86
|
eqcomi |
|
| 88 |
87
|
a1i |
|
| 89 |
88
|
oveqd |
|
| 90 |
85 89
|
eqtrd |
|
| 91 |
90
|
eqcomd |
|
| 92 |
91
|
oveq1d |
|
| 93 |
79 92
|
eqtrd |
|
| 94 |
93
|
oveq2d |
|
| 95 |
76 94
|
eqtrd |
|
| 96 |
95
|
mpteq2dva |
|
| 97 |
96
|
oveq2d |
|
| 98 |
97
|
oveq1d |
|
| 99 |
12 98
|
eqtrd |
|