Metamath Proof Explorer


Theorem chfacfscmulcl

Description: Closure of a scaled value of the "characteristic factor function". (Contributed by AV, 9-Nov-2019)

Ref Expression
Hypotheses chfacfisf.a A = N Mat R
chfacfisf.b B = Base A
chfacfisf.p P = Poly 1 R
chfacfisf.y Y = N Mat P
chfacfisf.r × ˙ = Y
chfacfisf.s - ˙ = - Y
chfacfisf.0 0 ˙ = 0 Y
chfacfisf.t T = N matToPolyMat R
chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chfacfscmulcl.x X = var 1 R
chfacfscmulcl.m · ˙ = Y
chfacfscmulcl.e × ˙ = mulGrp P
Assertion chfacfscmulcl N Fin R CRing M B s b B 0 s K 0 K × ˙ X · ˙ G K Base Y

Proof

Step Hyp Ref Expression
1 chfacfisf.a A = N Mat R
2 chfacfisf.b B = Base A
3 chfacfisf.p P = Poly 1 R
4 chfacfisf.y Y = N Mat P
5 chfacfisf.r × ˙ = Y
6 chfacfisf.s - ˙ = - Y
7 chfacfisf.0 0 ˙ = 0 Y
8 chfacfisf.t T = N matToPolyMat R
9 chfacfisf.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
10 chfacfscmulcl.x X = var 1 R
11 chfacfscmulcl.m · ˙ = Y
12 chfacfscmulcl.e × ˙ = mulGrp P
13 crngring R CRing R Ring
14 3 4 pmatlmod N Fin R Ring Y LMod
15 13 14 sylan2 N Fin R CRing Y LMod
16 15 3adant3 N Fin R CRing M B Y LMod
17 16 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 Y LMod
18 3 ply1ring R Ring P Ring
19 13 18 syl R CRing P Ring
20 19 3ad2ant2 N Fin R CRing M B P Ring
21 eqid mulGrp P = mulGrp P
22 21 ringmgp P Ring mulGrp P Mnd
23 20 22 syl N Fin R CRing M B mulGrp P Mnd
24 23 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 mulGrp P Mnd
25 simp3 N Fin R CRing M B s b B 0 s K 0 K 0
26 13 3ad2ant2 N Fin R CRing M B R Ring
27 eqid Base P = Base P
28 10 3 27 vr1cl R Ring X Base P
29 26 28 syl N Fin R CRing M B X Base P
30 29 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 X Base P
31 21 27 mgpbas Base P = Base mulGrp P
32 31 12 mulgnn0cl mulGrp P Mnd K 0 X Base P K × ˙ X Base P
33 24 25 30 32 syl3anc N Fin R CRing M B s b B 0 s K 0 K × ˙ X Base P
34 3 ply1crng R CRing P CRing
35 34 anim2i N Fin R CRing N Fin P CRing
36 35 3adant3 N Fin R CRing M B N Fin P CRing
37 4 matsca2 N Fin P CRing P = Scalar Y
38 36 37 syl N Fin R CRing M B P = Scalar Y
39 38 eqcomd N Fin R CRing M B Scalar Y = P
40 39 fveq2d N Fin R CRing M B Base Scalar Y = Base P
41 40 3ad2ant1 N Fin R CRing M B s b B 0 s K 0 Base Scalar Y = Base P
42 33 41 eleqtrrd N Fin R CRing M B s b B 0 s K 0 K × ˙ X Base Scalar Y
43 1 2 3 4 5 6 7 8 9 chfacfisf N Fin R Ring M B s b B 0 s G : 0 Base Y
44 13 43 syl3anl2 N Fin R CRing M B s b B 0 s G : 0 Base Y
45 44 3adant3 N Fin R CRing M B s b B 0 s K 0 G : 0 Base Y
46 45 25 ffvelrnd N Fin R CRing M B s b B 0 s K 0 G K Base Y
47 eqid Base Y = Base Y
48 eqid Scalar Y = Scalar Y
49 eqid Base Scalar Y = Base Scalar Y
50 47 48 11 49 lmodvscl Y LMod K × ˙ X Base Scalar Y G K Base Y K × ˙ X · ˙ G K Base Y
51 17 42 46 50 syl3anc N Fin R CRing M B s b B 0 s K 0 K × ˙ X · ˙ G K Base Y