Step |
Hyp |
Ref |
Expression |
1 |
|
chfacfisf.a |
|
2 |
|
chfacfisf.b |
|
3 |
|
chfacfisf.p |
|
4 |
|
chfacfisf.y |
|
5 |
|
chfacfisf.r |
|
6 |
|
chfacfisf.s |
|
7 |
|
chfacfisf.0 |
|
8 |
|
chfacfisf.t |
|
9 |
|
chfacfisf.g |
|
10 |
|
chfacfscmulcl.x |
|
11 |
|
chfacfscmulcl.m |
|
12 |
|
chfacfscmulcl.e |
|
13 |
7
|
fvexi |
|
14 |
13
|
a1i |
|
15 |
|
ovexd |
|
16 |
|
nnnn0 |
|
17 |
|
peano2nn0 |
|
18 |
16 17
|
syl |
|
19 |
18
|
ad2antrl |
|
20 |
|
vex |
|
21 |
|
csbov12g |
|
22 |
|
csbov1g |
|
23 |
|
csbvarg |
|
24 |
23
|
oveq1d |
|
25 |
22 24
|
eqtrd |
|
26 |
|
csbfv |
|
27 |
26
|
a1i |
|
28 |
25 27
|
oveq12d |
|
29 |
21 28
|
eqtrd |
|
30 |
20 29
|
mp1i |
|
31 |
|
simplll |
|
32 |
|
simpllr |
|
33 |
16
|
adantr |
|
34 |
33
|
ad2antlr |
|
35 |
34
|
nn0zd |
|
36 |
35
|
adantr |
|
37 |
|
2z |
|
38 |
37
|
a1i |
|
39 |
36 38
|
zaddcld |
|
40 |
|
simplr |
|
41 |
40
|
nn0zd |
|
42 |
19
|
nn0zd |
|
43 |
|
nn0z |
|
44 |
|
zltp1le |
|
45 |
42 43 44
|
syl2an |
|
46 |
45
|
biimpa |
|
47 |
|
nncn |
|
48 |
|
add1p1 |
|
49 |
47 48
|
syl |
|
50 |
49
|
breq1d |
|
51 |
50
|
bicomd |
|
52 |
51
|
adantr |
|
53 |
52
|
ad2antlr |
|
54 |
53
|
adantr |
|
55 |
46 54
|
mpbird |
|
56 |
|
eluz2 |
|
57 |
39 41 55 56
|
syl3anbrc |
|
58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chfacfscmul0 |
|
59 |
31 32 57 58
|
syl3anc |
|
60 |
30 59
|
eqtrd |
|
61 |
60
|
ex |
|
62 |
61
|
ralrimiva |
|
63 |
|
breq1 |
|
64 |
63
|
rspceaimv |
|
65 |
19 62 64
|
syl2anc |
|
66 |
14 15 65
|
mptnn0fsupp |
|